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I. INTRODUCTION.

In the past, most detection, estimation , and control problems

were studied in a linear space setting. While the linear space

aporoach leads to simple solutions for linear systems, no effective

synthesis procedures for optimal detection, estimation, and control

have been obtained for large classes of nonlinear systems.

It is only natural to believe that a nonlinear problem is best

studied in some kind of a nonlinear space. Among all possible

nonlinear spaces it is only natural to start with a space which

is locally linear, on which a differential calculus can be used ,

and which has a group structure for us to utilize. Such a nonlinear

space does exist in mathematical literature and is called a Lie

group. In fact, it was invented by Sophus Lie to study nonlinear

differential equations. The theory of Lie groups has been well

established and provides us with a large chest of geometric and

algebraic tools.

In addition to the mathematical nicety, the Lie groups are

natural state spaces for many nonlinear problems of practical impor-

tance. Notable examples are the rotation groups, which are the

state spaces for frequency demodulation, gyroscopic analysis, and

satellite attitude estimation and control. Other examples can be

found in power conversion, nuclear reactor control, and compartmental—

model study in bioscience, etc.

Recent years have seen many useful and interesting results on

detection, estimation, and control problems with Lie group structures. 

—~ -- -- —~~~~~~~~ -- —-~~~~-----~~~~ -~~~~-~~~~~-- ~~~~~~~
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Most of these results are facilitated by the rich geometric and

algebraic structures which are inherent in these problems and are

made clear only in a Lie group setting. The reader is referred to

[l]— [3], from which most related articles that are not in the

reference list of this chapter can he traced. This chapter is not

intended to be a survey of the development of what is now called the

geometric approach. We will rather restrict our attention mainly

to estimation and detection and some closely related issues.

In contrast to the linear theory , the continuous—time and the

discrete—time systems on Lie groups are very different in nature.

The approaches to their estimation and detection problems are thus

very different and have been developed on the bases of two separate

ideas. The idea for continuous—time systems is that of “rolling

without slipping .” The idea for discrete—time systems is the use

of the exponential Fourier densities.

The continuous—time systems on a Lie group that correspond to

the linear systems on a linear space are bilinear in form. In

fac t, the bilinear systems can be viewed as Induced by the linear

systems through “rolling without slipping .” Furthermore , “rolling

without slipping” can be shown to be an “almost sure” bijective mapping

between the bilinear systems and the linear systems . It is known

that the local study of a Lie group is entirely equivalent to the

study of the finite—dimensional linear algebraic structures of the

associated Lie algebra. “Rolling without slipping” does indeed

facilitate similar simplification in studying estimation and detection.

-~~~~ -~~ -- -~~~~
rn.-



-3-

The exponential Fourier densities have been used to derive finite—

dimensional optimal estimation schemes for many discrete—time

systems on compact Lie groups. This is made possible mainly by the

closure property of the exponential Fourier densities of any given

finite order under the operation of taking conditional distributions.

Another reason for using exponential Fourier densities is that any

continuous or bounded—variation probability density on a compact Lie

group can be approximated as closely as desired by such a density.

Most of these ideas can be clearly illustrated o the unit circle,

the simplest compact Lie group. The circle is also the natural state

space for many estimation and detection problems of practical importance

such as frequency and phase demodulation and single—degree—of—freedom

gyroscopic analysis. Therefore a detailed theory of estimation on the

circle will be presented in the next three sections. No knowledge of

Lie groups is required to understand them. Estimation and detection

on general Lie groups are studied in the last two sections. The

required definitions and theorems from the Lie theory are briefly

summarized there.

Although the two sections on general Lie groups and the three

sections on the circle can be read independently , an understanding of

the circle case can definitely help understand the problems and the

results on general Lie group. The main references for Sections Il—VI

are (4]—(8j respectively. Section V is the only section that contains

some new results. 
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This chapter is not intended to exhaust all existing results

on estimation and detection problems with Lie group structure.

The interested reader is referred to (9]—[17] for some of these

results beyond this chapter.

II. PROBABILITY ON ThE CIRCLE.

There are many fundamental differences between the estimation

and detection problems on Euclidean spaces and those on Lie

groups. In order for some readers to appreciate them, this section

will be addressed to some probabilistic elements on the circle. The

probability distribution function and the characteristic function on

the circle will first be briefly introduced .

One of the main concerns in this chapter is to study how one

uses the knowledge of the probability distribution of a random variable

taking values on a Lie group to determine an estimate of the random

variable that minimizes a certain error criterion. The conventional

least squares technique cannot be used here. Let us take the circle

as an example. The square error of the angles 00 and 3590 is (3592)0

whereas by geometrical intuition they are only 1° apart. In Sub—

section 11.3 we will look into this issue on the circle in detail.

The importance of the normal probability densities cannot be

overemphasized f or estimation and detection on Euclidian spaces.

Unfortunately , there does not exist an analogous density on the

L
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circle that possesses all the nice properties of the normal density.

In fact, the nice properties of the normal density are almost equally

divided between two contenders for normalcy, the folded normal density

and the circular normal density. It turns out that while the folded

normal density is natural to use for continuous—time estimation, the

circular normal density is more suitable for discrete—time estimation.

They will both be discussed and compared in this section.

II. 1. The Distribution Function.

1A point on the unit circle S can be represented by either the

angle Oc (—v ,-ir) it makes with a fixed reference point on the circle

or by the 2 x 2 orthogonal matrix

exp RO [
cos o sin e

)—ginO cog 0

where the matrix R [ °
~ ~J is called the infinitesimal rotation

matrix. The addition of two angles 0
1 and 02 modulo 2ic , denoted as

• O2~ 
corresponds to the multiplication of the two matrices repre—

senting the points.

Let 0 be a random variable taking values on S1— (—w ,v]. The

distribution function F of 0 can be defined on [—n ,wjby the equation

_ _ _ _  _ _  -
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F (e
r
) = P (—n<O<0

1). This function F is usually extended to

the whole real line by the equation

F (0
1 

+ 2w) — F (0
1
) — ~~~, 

_
~
<8
l
<
~~ 

The function F defined

this way is called the distribution function (d.f.) of 0 on the

circle.

Given two points 8
1 
and 0

2 on S
1
, we denote by arc (01,02)

the set ..f points from 0
1 

to 0
2 in the counter—clockwise direction

with 0
1 excluded and 02 included . It follows that

P (Oc arc (01, 02
)) = F 

~°2~ 
— F (0

1). There is a natural

projection from R1 to S1 defined by x > 0 = x mod 2w. Let

01 
= x

1 
mod 2w and 0

2 
= x2 

mod 2ir . It can be shown that

P (6c arc (0
1,
02) = (F(x

2
) — F( x

1)) mod 1. We note that

the d.f. F is a right continuous function , but in contrast with d.f.’s

on the real line,

lint F (e) = ~ , lint F(S) = —~~~~.

8-4_00

If the d.f. F is absolutely continuous , it has a probability

density function (p.d.f.) f such that

0 2
‘0 

f(S) dO = F 
~~~ 

— F (0
1). A given function f is the p.d.f.

of an absolutely continuous ~iistribution if and only if (i) f(x)>o ,

xtR1, (ii) f(x + 2w )  = f(x), (iii) f ~~ f ( x )  dx = 

1.L
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II. 2. The Characteristic Function.

Another representation of is as the set of complex numbers

of unit length. Any such number can be uniquely written as e~
0
,

0c(—w ,ff]. If S is a random variable taking values on (—ir ,,r), then

z — exp iS is a random variable taking values on the unit circle in

the complex plane, which will also be denoted S’.

The characteristic function of S (or z) is the function $ defined to

integers, t 0 , ± 1, ± 2, ..., by $(t) = E exp (it o) = exp(it 8)dF(B)

where F(e) is the circular d.f. of 8. Obviously 4i(O) = l,$(o) = 1,

‘p (-p), l*(~)k1. The expectations , ~ (t) = E(cost$) = Re$(t) and

~(t) = E(sint9) = Im4c(t), are called the t-th order sine and cosine

moments respective ly. If E (~~
2
( t)  + S

2(t)) is convergent , the random
t=l

variable 8 has a density which is defined almost everywhere by

f ( S )  = 

~~~ 
~~~~~~~~~~ exp (—itO)

The joint c.f. of two circular random variables 
~l 

and 
~2 ~~

defined by 4i(t ,s) = E exp i (t0
1
+ sO2

) where t and s are integers.

Let the c.f.’s ‘~~ 0
1 
and 

~2 
be iI 1

(t) and 
~~~~~ 

Then 
~l 

and

are independent if and only if *(t,s) = ~p 1
(t) 

~~~~~ 
Furthermore,

if the p.d.f.’s of 
~l 

and 
~2 

exist, then their convolution is the

p.d.f. of 0
~ 
• 

~2’ 
i.e.

(2rT)~~Z$1
( t) $

2
(t) exp (-ite).

L
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II. 3. Error Criteria and Optimal Estimates.

The standard distance function on the circle, the distance p

between two points on the circle , is the arc length of the short

path joining them. If we restrict 
~l 

and to take values in the

range (—rr ,w), we have

= min( I0 l
_0
2 I ,2v_ 10 1—O 21).

The class of error criteria we wish to consider is the class

of symmetric , nondecreasing cost functions——i.e. functions •:S
14R

which satisfy

O Ill(S) =

O < p (O
1
,O) ~~ . ~~~~ ~~~~~~ ~~

- “
~~2~~ 

(1)

Some examples of cost ~Llteria satisfying (1) are p(0)~ p(8,O),

(1 — cosO), p(0)2, (1 — cos0)2. We also wish to consider the special

class of unimodal , mode—symmetric probability density functions——i.e. ,

density functions of the form p:S1 -i[O ,co) with a unique maximum at r~,

such that

p (ii + 0) = p(n - 0) V S.

As the following theorem demonstrates , under these conditions

the mode of the density is the optimal estimate.

Theorem 1: Given an error function $ that satisfies (1) and a uni—

modal , mode—symmetric probability density function p, then the
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estimation error is minimized at the mode, i.e.,

E(~ (O—n)) < E(~ (O— a)) V a

where p has its maximum at n.

Proof: The theorem follows immediately from results on similarly

ordered functions and the rearrangement inequalities. The basic

result for real valued functions defined on R1 is contained in [18]

(thm . 378) and (19 , p. 1833. The result for S1 is obtained by

making only minor changes in these proofs.

We remark that from the symmetry of the problem, + has its

global maximum at it and p has its global minimum at r~ + i t .  Thus

E($(0—fl+1T)) > E(~ (0—ct)) V a•

It should be noted that Theorem 1 is the S1 analog of a

result of [20], [21]. Note that the same result is true if no

probability density exists but the probability measure is

unimodal at , and symmetric about, some point n, i.e., the d.f. F is

convex for (—w ,O] and if F(S) = l—F(—0) at each continuity point

of F.

Let us now restrict our attention to the error function,

4(O) = l—cos 0. This function was used widely in statistics [4]

and was used in [13] to design a phase—tracking system. It is

especially interesting , because locally it is a quadratic function,

i.e. l—cosOc~1/2O
2 for O<<1. Let 0 denote the optimal estimate of

the random variable S on S~ with respect to the error criterion
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E(l-cos(9-~)). As

= E(l-coe($4)).. i-fe cod , E sin8Ico.~ , ~~~~~~~

the optimal estimate G is determit~ed by

cosS l E cos O ,
p

sinO l E sin S ,
p

with 2 2~~p [(Ecos 0) + (Eria C) ~

We note that the complex number *(1) defined in Subsection 11.2

can be expressed as p exp iS. This number is called the resultant

of 0. In analogy to the linear space case, the optimal estimate S

is called the circular mean of 0 , and the estimation error r~ = i—p

is called the circular variance.

II. 4. Folded Normal Densities.

Given a random variable x on R1 with d . f .  F~ , the rand om

variable S = x mod 2w on the circle has the d.f. F def ined by

F(O) = E (F (O+Zwk)—F (2 wk — n ) ) ,  Ot( — w ,w ) .x

This can be viewed as obtained from wrapping F
~ 

around the

circumference of the unit circle. If x has a p.d.f. p~(z),

the corresponding p.d.f. of 8 is
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p(0) = E p
~
(0+2kw).

Corresponding to a normal density 
~~~ 

the folded normal density

F(O;n,y) = 1 E exp (—  1. (0—n+2ki)2] (2a)
/2wy k —oo 2y

plays a central role in the continuous—time estimation problem

considered in Section IV. The Fourier series representation of

the folded normal density is

2F(S;n,y) = 1 + 1 E exp (—
~~~~~~~~

) cos k(0—~). (2b)
2w it k=]. 2

From this representation it is easy to see that the convolution of
4

two folded normal densities, F(8;n
1~

y
1
) and F(S;~ 2 ,y 2) ,  is the folded

normal density F(O;n
1 • n2, y1 +y2 ). More important properties of

the folded normal density will be studied in the following [6).

Theorem 2: The folded normal density , (2a) and (2b), is unimodal

with mode at S = ri and is symmetric about n.

Proof: Since cos < 1, the second form of F in (2b) yields

2
F( O ;~~,y) < 1  + 1  E e tt Y’2 

— F ( n ;n , y) .
2w it n—i

Thus F has its global maximum at S — n.

Since F(O,n,y) — F(O—n;0,y), we need only show that F(O;Q,y)

is symmetric about 0 and monotone decreasing as p(O ,O) increases.

Symmetry is obvious (cos nO — cos n(—O)), and monotonicity will follow

if we can show

aF (O ;O ,y) < 0 Oc(0 ,ir) (3a)

[ _
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-—- - -~~~~ — TI



—12—

3F (O;Q ,y) > 0 Os(—1T,O) (3b )
ae
We now remark that the properties of F(e;O,y) have been studied

extensively, since it is a theta function. See (22] and [23] for

discussions of some properties of theta functions. Using the notation

of [22 , pp. 2, 42] , we have

F(S;0,y) = 1 0 4 ( 04-it, fl) = k (1 + 2q 2
~~~ cos 0+ q

4n_2
), (4)

n= 1

wher e q = e u/’2 and

k = 1 (l—q 2’5.

Using the fact that F>O and the form of F given by (4) we have

F k e ;0 ,v)~~~(8;O ,y) - [ ~~ 2c~
21
~~ 

4 -2 
] sin 8. (5)

n l  (l + 2q ’~ cos O + q ’~ )

It is easily seen that the term in square brackets on the right hand

side of (5) is positive for all values of 0 and thus (3) is correct.

Some work along these lines has been done in [53]. See [233 for

discussions of other relevant properties of theta functions , hype r—

geometric functions , Legendre polynomials, and Tchebycheff polynomials.

Note that the symmetry requirements of Theorem 1 are necessary.

For instance, if $ is not symmetric, the mode of the density need not

be the optimal estimate even if all the other assumptions of Theorem 1

do hold. As an example, consider the function $ : S1 9 R
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S 0 < S < w
—

— w < S < 0 .
iT

Suppose our distribution is the folded normal centered at 0. Then

it can be shown that the mode, 0, is not the optimal estimate.

Theorem 3. Let $ satisfy the second requirement of (1) and let

p(S) = F(O;n,y). Then E( ~,(9- fl)) is an increasing function of the

variance, y —— that is

d E ( $ (S— n ) )  > 0. (6)
dy

Proof: Writing

$(O) = d + E c sin nO + d cos n O )
0 n nn =  1

and using the results on Fourier series analysis,

2
E ( $ (O — ~ ))  = d + Z d e~~ 

y/2 (7)
0 

n=l

but we get the same error if we compute E(ip(S—n)), where ij is

the symmetrized function

ill (S) ~~( S)+  4(-EV2.
which also satisfies (I). Thus, it is enough to prove the theorem for 4
satisfying (1). In this case T~ is the optimal estimate and

—

= Y~$(e)F(e;O,y)dO

— 2 10
$(O)F(O;O,y)dO.
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Then , (6) will hold if

~o 
$ (O) a F(O;0,y) dO > 0

Suppose we can show that there exists S
0c [O ,ir] such that

F( O ;0 ,y) < 0 Oe(O ,S0)

~~~~~ F(e0;O,y) = 0

F( e ;O ,y) > 0 Sc(0 0, ir] .

Then , since

$(O) < $(0
~) ec [o ,oo]

$(0) >

we have

~~j  
$(0)~~ F(0;O,y)dS 

~ “~O~ ~ 
F(8;0,y)d0

= 

~~°O~ 
d (1/2) = 0,
dy

and we get a s t r ict  inequality if $ is not a constant .

Now it is easy to see that

2
F(S;O,y) = 1/2 a F(O;O,y)

as 2
and the theorem will be proved once we prove the following lemma, which

yields more information about the shape of the folded normal density .

Lemma 1: For an arbitrary but fixed value of y > 0, there exists

00c[0 ,w ] such that
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F(O;0,y) < 0 Oc[0,60)

aq2

a’ F(0 0 ;0 ,y) 0

aQ2

a’ F(8;0,y) > 0 Oc( 8 0, n]

as2
That is , F has a unique inflection point (at S~) on [O ,ir].

Proof: We ~‘q~ the form of F(S; 0,y) given in equation (4). We

compute

F 
~~ 2 F = -A con 8 + B sin $
as

2n-lA —  E 2g
n l  

(l+2 q2
~~~ cos e + q

4fl_2 )

B = 4g2 (fl+tU~l)

n~in (l+2q 2 cos S + q4
~~

2 )(l+2 q 2nt 2cos 0 +

and then a simple computation yields

2

2 F(O;O,y) < 0
as

2
-
~~-—~~

- F(S;0,y) > 0 VS c (w ,w]
as 2

and

~ (F
_l
~~
2F,~~e2) 

(S;O,y) > 0 V Sc(O ,ir ).

These inequalities imply that, there is a unique 8~e(04 ) such that

2

2 
F(0

0;0
,y) — 0 and that F(e;o,v)>o Zor 8>

as

L - 
-
~~~
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a2 F(01;O,y) F ~02 2 (o~ ,y~
_________________________ 

> as
F(01 ;0,y) ____________________ 

=

~~~~~~~

or ~~ F( 0 1;O ,y)  > 0

ao 2
and the lemma and the theorem are proved .

Note that by symmetry we have that F has a unique inflection point

at —e
~ 
on the interval [—ii ,O].

Theorem 3 tells us that the intuitive notion that we “have more

accurate info rmation ” fo r smaller values of y can be made precise.

Also , this theor em imp lies another result , which is the S1 ana log of a

problem treated in [24] .  The problem treated in [24]  is tha t of

finding the optima l linear f i l ter  minimizing an asymmetric error criterion

on R1 that dec reases on (— co ,O) and increases on [0 ,~~) .  The result is

that the optima l linea r f i l t er is the minimum va r ian ce f ilter , and the

proof essentially consists of showing that the expected error cost is an

increasing function of the variance . Theorem 3 clearly implies an S~

analog of this result .

Some examples of cost criteria satisfying (1) and the associated

optimal costs when the density is folded—norma l are given in the following

theo r em , of which the proof is simple and is therefore omitted .

Theorem 4. Let p(0 ) = F(O;n,y). Then

( i) E( l—co s ( 0— n ) )  - l—exp (-j)

(ii) E(l—cos(S—n))2 = —2 exp (—i) ÷ exp (-2v) 



_ _

__  -

(iii) E(p(8—n)) 2 — 
~ ~ (2k+l)2 exp(— f(2k+l)

2
v)

it k—0

~~~, k+l
(iv ) E(p 2 ( S— ri ))  .~2L —‘~ ( 

~ 
— exp (—

~~~~~~) I

3 k=1 Z

II. 5. Circular Normal Densities.

The multistage estimation for discrete—time systems on

involves two operations alternately tha t are convolution and conditioning

(i.e. taking conditional distribution). While the class of folded normal

densities is closed under convolution , unfortunately it is no t closed

under conditioning . The d i f f icu l ty  involved in using folded normal

densities for discrete—time estimation was discussed in [61 and [25].!

The difficulty is partially resolved [53 if another class of

“normal” densities on S1, is used. These densities are called

circular normal densities and have the form

G(0;n ,y) = 1 exp y cos (0— r i ) ,
2n1 0 (y)

where I0(~~) is the modified Bessel function of the first kind and order

zero , i . e . ,

10(y) = 
k-0

The circular norm al density was first introduced by Langevin 126] in 1905 and

by Von Mises [27] in 1918 in the context of statistical mechanics. In
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contrast to the folded normal densities , the class of circular normal

densities is closed under conditioning rather than under convolution [5].

More will  be said about this in the next section a f te r  the circular

norma l density is generalized to the exponential Fourier density.

The class of normal densities on an Euclidean space has the

closur e properties under both convolution and conditioning , which accounts

fo r the success of the Ka lman—Bucy f i l te r ing f o-r the discrete—time

systems . Now the folded and the circular normal densities divide these

two properties between them . Which one then , is more “normal” than the

other? We recall that the linear normal density has two characterizations

—— the max imum likelihood characterization and the maximum entropy char-

acterization. It was observed by Von Mises [27] and Mardia [4] respec-

tively that the circular normal density has both characterizations on

the circle. However , the Browuian motion on the circle , induced by that

on the real line through “rol .ing without slipping” (See Section IV),

and a variant form of the central limit theorem on the circle (See [4])

both lead to the folded normal density . Further , the independence of

p( 0 1) and p( 0 2) and p( 0 1) — p ( S
2),  where p is an arb i t rary f unction and

and are independent , also leads to the folded no rma l density (See

[4 ] ) .  Therefore , there may be no answer to the above question. Before

we s tar t  the next section , let us have a few words about the shape of

the circular normal density .

The circular normal density G ( 8 ;n ,y )  is obviously unimodal and

symmetric about the mode 11. The ratio of the density at the mode to

that at the antimode i~ + it is given by exp 2y so that the larger the

_ -

~

- -~~~~~~~~~
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value of y ,  the greater is the clustering around the mode. It can be

shown by straight forward calculation that the function G(8;0,y) has

two inflection points,at  ± arc cos [— Vt2 + (1 + v2/4)~~
21 .

III.  DISCRETE— TIME ESTIMATI ON ON THE CIRCLE.

Estimation for discrete—time systems on the cir cle was studied

in [6] and [25],  using both folded norma l densities and Fourier series

representations of probability densities . The optimal estimation

equations obtained therein are infinite—dimensional and cumbersome .

Although some numerical simulation has been done on the suboptimal

equations obtained through truncating the higher order terms , it is not

clea r whether these equations have sat isfactory performance in general .

As a matter  of fact , the “dimension” of the optimal estimation

equations derived from using the folded normal densities increases very

rapidly in time . When Fourier series are used to represent proba-

bility densities , the application of Bayes ’ rule, which involves the

multiplication of two a priori densities , has the effect of spreading

the dominant Fourier coefficients into the higher order terms. Obviously ,

th is dilemma becomes compounded in a mu ltistage estimation problem when

a sequence of multiplications of Fourier series takes place,

In this section, we will present an alternative approach. The

approach is based on a new class of probability density functions which

have the form

ez~
[
~ (a

k con k x + b  sin kx)].
k 0

Such a density will be called an exponential density of order n, to be

denoted by EFD(n). We note that the circular normal density introduced 

~~~-~~~~-—
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in the previous section is exactly the EFD(l).

III. 1. Exponential Fourier Densities on the Circle.

There are two reasons for using the exponentia l Fourier densities.

It is obvious that  the multiplication of two EFD(n) ’s does not raise

the orde r of the densities. Thus the class of n-th order exponential

Fourier densities is closed under the operation of taking conditional

distr ibut ions .

Another reason for using EFD’s is that any continuous or bounded

variation function can be approximated by an EFD as closely as desired

with respect to the square integral norm.. This property enables us to

use an EFD(n) as a mathematical model of any probability distribution

on the circle . Both this and the aforementioned closure properties can

be generalized to compact Lie groups and some homogeneous spaces, as will

be seen in Section V. ---- --

Befo re we i l lus t ra te  how the EFD ’s are used to deduce finite—

dimensional , closed—form , and recursive equations to update the condi-

tional densities of the signal given the observation , we will now state

the approximation property in the following theot =~ of which a general

version for compact Lie groups will be proven in Section V.

Theorem. Let p be a continuous probability density on S~. For any

given positive number c, there exists an exponential Fourier density,
n

— exp Z (akcos kx + bk 
sin bx), such that

k—0

1(p(x) — ~~ (x ) ) 2 dx < c.

I 
- - - - - -~~~~
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III. 2. A Basic System on S.~~

Assume that the signal and the measurement processes are governed

b y the equations

S = 8 4w
n+l ~

m ~n n n

whe re {w } is a given deterministic process on S1, and { v }  is a wh it e

random process on S1. The probability densities of and v are assumed

to be the following independent exponential Fourier densities:

p(s ) = exp 
k=0 ok cos ks 1 + b

k 
sin ks)

p (v )  = exp 
k=O ’

~ 

cos kv~ + 8nk 
sin kv~).

By Bayes’ rule ,

= c
÷1
p (m ÷11s +1

)p(s
+1 

~fl
tt
) (8)

with c +i 
= 1/p(m

+11m5 
= a normalizing constant . It can be

easily shown that the conditional densities on the right can be written

as the following exponential Fourier densities:

p(5
nIm

~~ 
= exp E (a k con ks + b

k 
sin k s )  (9 )

= exp 
k—0 

(a
k 

con k(s
÷1 

— w )  + b
k 

sin k(s +1 w ) )  (10)

p(m +11s +1) exp 
k=0 

(%+l ,kc05 k(m
~÷1 

—

n+l ,k sin k(m~+1 —

where aflk and bflk are to be determined . Substituting these two

equations into (3), 

-~~~~~~-—-— --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Nn+lm ) = c ÷1 exp E [(a
k 
cos kw

—b sin kw + a cos kmnk n n+1,k n+l

sin km ) cos ks + (a sin kwn+l,k n-fl n+l ak n

+ b cos kw +a sin kmnk n n+l ,k n-fl

—~ cos km ) sin ks In+l,k n+l n-fl

Thus, we obtain the following recursive formulas for a and b which,
nk nk

in turn , give us the desired conditional densities

a = a cos kw — b sin kwn+1,k nk n nk n

+ °n+1,k cos km ÷1 + 
~n+l ,k sin km 1

b — a  sin kw + b  cos kw
n+l ,k nk n nk n

+ a
a+l k sin Ian~~1 — 

~n+l ,k C05 km +1

N
8n÷i1m

~~
’) exp 

k~O 
(a
fl÷l k cos ks~+1 + b

~~ l k  ~~~ km~~1)

for k 1, 2, ..., and where a + i O  
is a no rmali z ing constant.
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III. 3. A Phase—Shift—Keyed System.

Consider the signal and the measurement processes governed by

the equations

s s •wn+l a a

m cos (WI. + s ) +v
a a a n

where {w} is a given deterministic process on S1 and {v) is a white

Gaussian sequence with zero mean and varian~~s 
2 

The probability

density of 
~l ~~ assumed to be the exponential Fourier density

p(s1
) - exp 

k~0 
(a

lk 
cos ks1 + b lk sin ks1).

We note that the measurement process im ) can be viewed as a
a

sampled sinusoidal wave modulated by a random phase process {s} and

corrupted by additive white Gaussian noise {v ). The special case

of thin model where p(s
1
) is a first—order exponential Fourier density

has been solved in [13]. Here again , by Bayes’ rule and straightforward

calculation , we have( 8—l0) .As v~~ 1 is a Gaussian random variable, it

— follows that:

(in f s  ) = 1 ~ 
(m

~~~ 
- cos(wt~~1 +

n+l n+l -i-—— exp 
~
- 2v 2 n  °n+l L

- (11)

Substituting (11) and (10) into (8) yields



-
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exp 
k=0 

[ a k cos k(s 1 — w )

+ b k sin k(s +1 — w )

— 

20
2 

(m 2
+1 

— 2m
1 cos (ut +1 ÷ 

~n+l~
n-fl

+ cos
2 (ut 4 s +1)) )

— 
c

÷1 N
exp 

k~0 
[(a

k 
cos kw— b

k 
sin ‘

~ n~ 
con ks~~1

+(a sin kw +b  cos k w ) s j n ksnk n nk a n-fl

+
m
n+l

cos ut cos S2 n-fl n+l
n-fl

— 
mn-fl sin u t  sin s — 

- - . 

1 cos 2~ t2 n+l n-fl -
~~~~ n+la 2n+l 40 n-fl

~~~ ~~n+l + 

40
2 

sin 2wt sin 2
~n+l 

— 
~~~~~ 

— 4Jn-fl 2a n-i-i

Thus we obtain the following recursive formulas for a and b which,nk nk
in turn , give us the desired conditional densities p(s J m

a
):

ma = a con w — b sin w + n-fl cos wta+l ,l nl a ni n -
~~~~~ n-I-i , 

*

= anl sin w~~÷ bnl con W
n~ 

— ~fl+l sin wt
~~1

0 a+l

Id 
—-
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an+l 2 a~2 
con 2wn2~ ba2 sin 2w~ — 1 COB 2w t

~+1
40 +i

b = a sin 2w + b cos 2w + 1 sin 2wtn+l,2 fl2 a n2 
2 n+l;

40 +1
and , for k = 3,4,..., recursively

a = a  cos kw — b  sin k~,n+l ,k nk a nk a,

b a sin kw + b  cos kwn+l ,k nk a nk a,

n+l N
p(s

~+1Im ) = exp 
k=O n-I-l ,k con kS +1 + b

fl+l k 
sin

where an4-l ,0 is a normalizing constant.

I~ t. 4. Periodic Measurements in Additive White Gaussian Noise

Conside r the signal and measurement processes

S S •Wn-fl n a

in h(s ) + v
a n n

where {w } and{v } are as in the previous section and where h.is a periodica n

function with a period of 211.

The periodicity of h allows us to approximate it by a finite

Fourier series, as closely as we wish in the space of square—integrable

functions. In other words, for any c>0, there exist {f~ },{g.~}. and a

positive integer M such that

- - -_ _ _
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I I h — hM II <

where
M

= 

~ 
con ks + 

~k 
sin ks). (12)

k=0

Witho ut loss of generality , we may assume that  N > 2M in (12),

fo r otherwise we can set alk b
ik 0 , for N < k < 2M, and write

p(s 1) = exp 
~~~ 

(a lk cos ks1 + b
lk sin ks1). We can also assume that

= 0, fo r otherwise f 0 can be incorporated into i n .  Assume that

p~5n Im t ) = exp EN (a k co n ks -I- b
nk 

sin ks ). By Bayes’ rule and

straightforward calculation , we obtain

n+l nin ) = c
÷1
p(m

i-1 ~n+l~~~~n-fl 
~~ )

= 
cn±i exp I - 1 (m +1 — 

~~k 
~~~ ks~~ 1+~~ sin ksflf l

)) 2

n-f l 2a n+l 
k=0

+ Z (a k 
cos k(s~~1 

- w ) +  bnk 
sin k( s~~~1- w ) ) ] .

k=O 
-

(13)

We note that the function in the above bracket can be written as a finite

Fourier series of order N in the variable This shows by induction

that for all n = 1,2 , . . . ,  p(sn lm
n) is an exponential Fourier density of

order N; the recursive formulas for a
flk 

and b
nk 

can be straightforwardly

obtained from (13) . However, the formulas are tedious and will

not be displayed here.

L.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ __ _ _ _  _
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IV. CONTINUOUS—TIME ESTIMATION ON THE CIRCLE.

A signal process and an observation process, taking values on S~ ,

will be formulated in terms of bilinear Ito matrix differential equations.

The conditional probability distribution of the signal, given observations

over a certain period of time, will be evaluated. Recursive computational

schemes for optimal estimation (filtering, smoothing, and prediction),

with respect to the error criteria defined in Subsection II. 3, will be

derived . In fact it will be shown that optimal estimates on S1 can be

obtained r ecur sively by the use of an ordinary vector space estimator

together with a nonlinear preprocessor and a nonlinear postprocessor .

Multichannel estimation on abelian Lie groups will be examined. Examples

illustrating the optimal estimation procedure are given at the end of

this section.

IV. 1. Signal Processes and Observation Processes

Consider the situation of a unit circle in R
2 with a line tangent

to it.

We allow the line to perform a one-dimensional continuous trans la-

tion (along itself); fix the center of the circle and require that there

be no slipping at the point of tan.genèy. The line then induces a rota-

tion of t~ ~ circle and if the line moves a distance x the circle rotates

x radians and so is x mod 2rT = 8 radians away from its initial orientation.



---
~
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This method , called “rolling without slipping”, will now be

used to const ruct a continuous signal process on S1 and to formulate

the mathematical model of a sensor (i.e., an observation process) to bu

used in this report.

We will adopt the following notation

(~ ,A ,P) = a probabi li ty  spa ce

s = a positive real number

= the family of real—valued continuous functions,

a , on [O ,s] such that a(O) 0

= the Borel a—field of C~

C~ = the family of 2 x 2 orthogonal—matrix—valued

cont inuous  fu nctions , A , on [O ,s] such that A(O) is

the iden t i t y  matrix I ,

B~ the Borel a—field of C~~, - -

R =

~~~~~ 

j
~j J -

Lower case letters denote elements in C~ and upper case letters denote

elements in C~ .

Let J:C~ 
-
~~ C~ be defined by

(J ( a ) ) ( t )  = exp(a ( t )R)  — cos a(t) sin a(t)1

L —sin a(t) cos a(t)J (14)

for a cC~ and t c [O ,s]. It is easily seen that J is B~—measurable and

- 

- 
bijective.- A point on the unit circle, S

1
, can be represented by either

the angle ec[—it,~) it makes with a fixed radial axis or the 2 x 2

orthogonal matrix exp(RO). Therefore, in the first representation, C~ is
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the family of piecewise continuous functions 0(t), such that at any

point of discontinuity the right hand limit of 
~ is ± v, while the

left—hand limit is ÷ ii.

Each continuous curve a(t) on R1 gives rise to one and only one

piecewise continuous curve 0(t) lying between ii and —ii , of which the

continuous segments are obtained by translating the corresponding

segments of a(t) by an integral multiple of 2ir . Conversely,

each piecewise continuous curve in gives rise to one and only one

continuous curve taking values on R1 which is obtained simply by

piecing the continuous segments together. This intuitive observation

illustrates the bijective property of the operator J. Thus, a continuous

random signal process on ~l which is described by an A—measurable

function X:c~-~C~ correspond s to a continuous random signal process on

wh ich is descr ibed by an A—measurable function x:~ -,C~ such that

X(t) = ( J (x ) ) ( t ) ,  t t [O ,s] .

We now tefine a random process z:~9C~ by the K. Ito random

differential equation,

dz(t) = m(x(t),c) dt + ql~
’2dw( t) ,  z(O ) — 0 ,

where m:R
1 
x R 1-~R 1 is Borel—measurable , q :R 1-iR 1 is positive and

measurable and w is the standard Brownian motion on (ç~,A ,P),  inde—

pendent of x. Let Z:~ -~- C~ be def ined by

Z(t) — (J(z))(t) .

Applying the Ito differentiation rule, we obtain the following Ito

matrix differential equation: 

- - - -~~~~~~- -- --
~~~~

- -
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E —q(t) 15(t) 7 r 0 dw(t)7
dZ(t) = Z(t) j 2 dt + Z ( t )I  J (15)

L m (t) —q(t) j L —dw t OJ
2

Z(O)  = I ,

where m (t) ~ m(x(t),t) and the diagonal terms are the second 
4

order correction terms which keep Z on the circle. This equation is

the mathematical mode l of the sensor to be used . We note that the

input , x(t) to the sensor is not the dynamical state X(t) of the

rotational signal process on the circle, but rather the angle the

rotational process has swept.

The physical motivation for this sensor model comes from the fact

that in observing a rotational process (for instance a gyroscope

recording rotation about a fixed axis) our measuremant contains inf or—

mation on the total rotation , x (t ) ,  not j u s t  t h e or ien ta tion , X(t).

In some applications , such as the gyro problem mentioned above, we wish

to ext ract knowledge of orientation from knowledge of rotation , so it

is proper to regard X(t) as the signal process. However, in other

applications , such as FM demodu lation , our interest centers on the x

process , and in these cases , we may regard x as the signal .

IV. 2. Conditional Probability Distributions.

In this subsection , we will derive equations for the conditional

probability distribution of the signal process given observations over

some time period . The approach of this section is measure—theoretic

in nature , and the major results are summarized in the statements of

Lenm a 2 and of Theorem 5 and its two corollaries.
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Let us denote {z(r),rc [O ,t]) and {Z(-t), t~[0,t]} by z~ and

z~, respectively. We note that — J(zt). Since J is bijective

f r om C~ to C~ , the a—subfield of A generated by z~ is the same as

that generated by Z~ . In other words , the information carried by z~

and Z~ is the same. That a—subfield will be denoted by A
t. The

a—subfield of A which is generated by X
~ 

— X(A) (the subscripts A,s,t

denote that the processes are evaluated at these times) will be denoted

by A
XX

Let P be the conditional probability measure on (
~ , A )  given

At, defined by P ( A ,~ 2
) = P(AIA

t) ( w
2), for AeA , 

~~~~ 
Let 

~zx be the

conditional probability measure on (~ ,A t) given A , defined by

P ( B ,wl) = P ( B I A ) (~ l) ,  for BcA t
, w1c~ . The restrictions of P to

At and A are denoted by P and P , respectively. Let ~ and ~ be the
z x z x z V

t t t
measures induced on (C1,B1

) by z and w , respectively. Define the

conditional measures on (C~ ,B~) ,  given X
A
, by ii (B ,wl) 

—

P(z 1(B)IA~
) ( w

1
), for BcB~ W1C1~.

It is known [28] that ~ where~~ denotes equivalence

of measures, and that

~~zx (e
t A )  — E [0 t

1~5
~ = A

x
]

1•Iw

dp 
(c t ) — E

x
[O t

]

dii

Here E
~ 

means taking the average over x. Further,

= exp (—1/2 m 2 (t )dr + ~4- m ( r ) d  ~ ( r ) )  

— ~~~ --~~~--- -- —— --
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where ~ denotes an Ito integral. Hence

(u2,w].
) (z t (w

2
) ,  X

~
(u,

~
))  ..Ex~0t lX X= x~(&~i~))

E(O t)

where

= exp (—1/2 5~ m
2
(t)dt + rn (~~) dz(t,~ 1

)). (16)
q q :1

We note that dP (~ 2 ,~ 1) is A1 x A~
-..measurable. Applying a general

Bayes rule from [29], we obtain

dP dPxz (u1 ,u2
) = zx

dP dPx z

Let us denote the family of 2 x 2 orthogonal matrices by M
0 

and the set

of induced Borel sets by L~. Let be the conditional

measure on (M
0,80
) given A ,  defined by ~~~(A,~2) = P ( X

A

l
(A) I A

t ) ( w
2
) ,

for AcB0,w2c~. Let v be the measure on (M0,B0
) induced by X

~
. Then

it is easily seen that

~~xz (X
x

(w
i

) ,  Zt(w2)) 
= 

~~xz (W
1
,w

2
) 

= 
Ex(O

t
IX A

= X
~
(u1

))
X X 

E(O t
)

where is defined by (16). Summarizing what has been shown, we

have the following lemma.

Lemma 2: Consider the observation process described by (15). The

conditional probability measure ~~~~~~ for the signa l X~ given the observation

Z~ is then absolutely continuous with respect to 
~~ 

the a priori measure

for X
~
. Further , for e C~ and X t M0, one has
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dv
~ (x , Z t ) — Ex (o t (X —X)

dv
X E(e t)

where

t t 2 t
0 — exp (—1/2 1rn  (-r)dt + ; rn ( t )  [Z ’( ~r ) d Z ( r ) ] 12) (17)

oq o q

with [Z’(t)dZ(r)]12 = [1,0) Z ’ ( t ) d Z ( t ) [  I

If the density function of v exists and is denoted by 
~~

then it follows from Lemma 2 that the density function P ( . l Z t ) of

v exists and can be expressed as follows :Xz

E (0
t
~ X A X) p (X)

t
A E~~~

(°  )

where 0~ is defined by (17). Let x c R~ be defined by exp Rx = X and

—11< x < ~~. Then by simple calculations ,

~ x 
(x lz t ) Ex (O t lx A = x ± 2k-n, k—i , 2, . .. )  p

~ 
(X)/ E (8~)

A

— E E(e t lx(A) = x + 2k-n) p (X+2klT )/E (8
t

)
k=-~

where p denot~s the density function of x (A ) .  This completes the

proof of the following theorem.
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Theorem 5: Consider the observation process described by (15). If

the density function of X(A) exists, then the conditional density
—A

function 
~~ 

(.(Z~) exists and can be expressed as follows

p (xIZ t) = 

k=—= ~ X 
(x-4-2kii-Jz t)

Ex
(O tIx(A) = x+2k lT)p (x+2kir )

xA 
—

E ( e t )

where is defined by (17), p denotes the density function of x(A)
X A

and x is determined by exp Rx = X and the condition -IT �x<TT .

It is appropriate to remark that one can easily derive the

stochastic partial  di f fe ren t ia l  equation for the conditional density

~~ 
using Theorem 5 and the well—known equation ([31],[32]), for

—A

~~ 
(x4~2k~~Z

t) ,  —~~ < k < ~~ . For economy of space, this equation will
—A

not be displayed . However we remark that when m (x,t) is periodic in x

with period 2-n , the equation is in a form similar to the Stratonovich—

Kushner equation with p replaced by p
X

A
Using Theor em 5 and the well—known fact  [30] that the smoothed

and the predicted densities can be expressed explicitly in ternis of

filtering , we can easily obtain the following two corollaries.

Corollary 1: The conditional smooth density p ( X I Z t
),  for t < A <

x 0— —

may be expressed In terms of the conditional filtered density as follows: 

- --- -~~~~~~~~ - -- ----------- -~~~~~~~~~
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~~ 
(X1Z~) = E p (x+2k ,TIZ X ) exp 

~~ 
a
5 dI —l/2 { ~s ds)

k —oo X
A q( s) q(s)

where x is determined by eXp Rx = X , -1T~~x~~ir and

dl = [Z’(s)dZ(s)]
12 

— m(s)ds

• 
= m (s1x~ 

= x) — in(s)

in(s) = E(m(s) 1Z 5)

in (sIx
~ 

= x) = E(m(s) ~Z
5 , X

A 
= x ) .

Corollary 2: Let X be a Markov process with given transition density

~~ 
(X~x(t) = ~~). The conditional predicted density 

~~ 
~hIz

t) ,  for
—A —‘A
to < t < A may be expressed in terms of the conditional filtered density

as follows :

LA 
(XIZ

t) - / (X~x(t) =

IV. 3. Optimal Estimation.

In the previous subsection, the conditional probability distributions

were studied. A variety of estimation problems may be studied based on

- 
- • those conditional distributions, but some estimation problems on

the circle can be solved directly by using results in vector—space

estimation theory. In this subsection , the well—established linear optimal

estimation theory will be used to deduce recursive equations for optimal

estimation on S1 and thereby illustrate the approach.

~ 
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The estimation problem with which we will mainly be concerned in this

subsection is the following : Given a symmetric cost function 4 defined

by ( 1), construct a 2 x 2 orthogonal random matrix X(X~ t) as a

B~ -measurable functional of Z~ such that for allG -measurable 2 x 2

orthogonal random matrices M one has the inequality

E(~ (X( A ) , X(AIt)) !Z
t) < E(~~ (X (A ) , M) Z

t ) ,  (18)

in which ~~X1,X2 ) 
~ 4~

( 0) ,  0 being determined by exp R8 Xj~ X2 and

the condition -rr~ 8< ii ( i .e . ,  8 i8 the angle between X
1 

and X2).

* 
We have seen, at the beginning of this section, that a continuous

random process X on S1 can be identified with a continuous random process

x on R1 via the bijective mapping X = J(x). We now construct a signal

process X on S1 by injecting a linear diffusion x into x satisfying

dx(t )  = a ( t ) x ( t )  dt + b 1
~
’2 (t )  dv ( t ) ,  x(O) = 0

where b(t) > 0, V tcT, and v is a standard Brownian motion, independent

of the observational noise w . Applying the stochastic differentiation

rule, we obtain the following stochastic differential equation for our

signal process X =

dX(t) — — 1/2 b (t ) X ( t ) d t  + X(t)R{a(t)[~0(exp Y a( t ) dt )

b112 (s)d v ( s )]d t  + b~~
2 ( t )d v ( t ) }  (19)

X(O)— I 
-

where we note that x(t) = J~
t
(exp J~

t a ( r ) d r ) b hh’2(s)dv(s).

The observation process to be used in this subsection is taken to

be Z, satisfying the stochastic differential equation:

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  
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r-g(t) c(t)x(t3J ro dw(t)1
dZ(t) = Z(t) 2 dt + Z(t) (20)

[_ c ( t) x ( t)  -q(t)  j [_dw(t) 0

Z(O) — I.

As shown in Subsection IV.l, Z can be identified with z”f
1
(Z) satis-

fying

dz(t) — c(t)x(t)dt + q1~
’2
(t)dw(t)

z(O) — 0

Note that the equations for X and Z are each bilinear in form.

Moreover , z~ and Z~ generate the same a—subfield A in (~ ,A ,P). Hence

E(x(A)~A
t) is both a B~—measurab1e functional f1 

of z~ and a

measurable functional f2 of Z~ with

f2(z
t) — f1(J4(Z t) ) .  (21)

Let and ;(AIt) denote f
1

(z t) — E(x(A)jZt) and f 2(Z t) E(X (A)IZt)

respectively.

We will first study the filtering problem, where a — t. Then

the Ka].man—Bucy linear filtering theory yields immediately

~~~~ — a(t)x
~ ,~

dt + K(t)c(t)q 1(t) (dz( t) — c ( t ) x
~ I~

dt)

~oIo
-°

where K is the solution of the Riccati equation

k(t) — 2a( t )K(t )  — c2 (t)q~~~(t )K 2 (t) +

K(0) — 0.
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In view of (21), we ob tain the following l~~~a, which no t only leads

to the solution of the above stated filtering problem but also applies

directly to optimal frequency demodulatIon [6].

Lemma 3: Let the stochastic process (19) be the signal process and

the stochastic process (20) be the observation process. Then the

filtering equations are - - 
- - -- - —

- 

dx(tlt) = a(t)x(tft)dt.

- 

+ K(t)c(t)q 1(t) ((Z’(t)dZ(t)]12 -c(t)Ic(tjt)dt)

x(0I0) = 0

with K( t) — 2 a( t)K( t) — c2(t)q~~ ( t)K2(t) + b ( t)

K(0) — 0

and the conditional probability density is given by

p (xIZ
t) 1 exp [— 1 (x—x(tjt))2].xt ,‘7~ f~(tj 2~~t)

In view of Theorem 5, we see that p (XIZ
t) is a f olded normal

density. By Theorem 2, it follows that p (XIZ
t) is unimodal with

mode at exp [x (t l t )R ]  and is symmetric about it. We may now conclude

from Theorem 1 that for a cost function defined by (1),

E(G(X(t), exp [x(t~t)R])jZ
t) < E(~ (X(t), M)IZ

t)

for any A
s
_measurable 2 x 2—dimensional orthogonal random matrix M.

Since exp[x(tlt)R] is easily seen to be a B~—measurable functional of

Z~, it follows that the optimal estimate of our signal process is

X ( t l t )  — exp [x ( t l t )R ] .

Differentiating this with respect to t yields

- ------~~— —---- - -- ---- -
~~~-

- - ——



—39—

d X ( t  ~t) = ~ K2(t)c2(t)q 1(t)X(t It)dt+X(t ~t)R((a(t) — K (t ) c 2
(t ) q ~~~( t ) )

t t 2 1 1
I (exp .1 (a(t)—K(t)c ( -t)q (t))d-r)K(s)c(s)q ( s ) [ Z ’ ( 5 ) d Z ( s ) ] 12 J d t
0 s

+ K(t)c(t)q 1(t)[Z’(t)dZ(t)]
12).

Summarizing what has been shown, we obtain the following theorem.

Theorem 6: If the signal process X and the observation process Z on

S1 satisfy the following stochastic differential equations:

d K ( t )  = ~ b(t)X(t) dt

+ X(t)R(a(t) ~~
t
(0~p 

~~ 
a(r)dT)bl/2(s)dv(s)dt]+ b~~

2
(t)dv(t))

X(0) = I

dZ (t)  = z ( t )  ~~~-~~(t)  

~ 

c (t ) [ ~ X ’ (s ) d X(s ) ]

121 dt

— c ( t )  [ ~ X ’( s )dX( s)  
~12

— 0 2

+Z (t ) I  ~ d w ( t )

—dw ( t )  0

Z(0)=l

where w and v are independent standard Brownian motions on R’, then

• the optimal estimate X(tlt) in the sense of (18) satisfies the following

stochastic differential equations :

dA(tlt) — ~ K
2(t)c 2(t)q~~(t)X(t~t) dt ÷

X(tl t)R((a(t) - K(t)c
2(t)q 1(t)) [ I (exp f (a(T) -

K(t)c2(t)q~~(t))dt) K(s)c(s)q~~(s) [Z’(s)dZ(s)]12] dt 
(22)

+ K(t)c(t)q ’(t) [Z’(t) dZ(tfl12)

—.-—- — - -
~~ 

-—
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K (t) = 2a(t)K(t) - c
2
(t)q~~(t)K

2(t) + b ( t )  ( 23)

K(O) 0

The conditional probability density is given by

~~~ 

= 
______ ~ exp [— l_ (x+2k-i~ — ; ( tj t ) )

2
1

/~Tt K (t )  k=-~= 2K(t)

1 + 1 E exp [—k 2K2(t)] cos k(x-;(tlt))

where x is defined by exp Rx = X and —n < x < ir.

Some of the expected errors E(~ (X(t),X(tJt))) of the optimal

estimate X ( t l t )  can be obtained immediately from Theorem 4.

We note that the optimal f i l ter ing equations (22) and (23) are

complex in form. Conceptually , however, the filtering procedure is

quite simple: The observation process dZ first goes through a nonlinear

t ransfo rmer. The transforme d process rz ’dZ~ 12 then goes through a

Ka lman-Bucy linear f i l t e r .  Then we inject the f i l tered proces s

~(t(t) into S’ via the injection mapping J. The output X(tft) of the

nonlinear injector is the desired estimate.

The same approach can be used to solve the smoothing and predic-

tion problems . The solution to the prediction problem is tr ivial  and

hence omitted here. For the smoothing problem, we first recall [33]

that for 0 < A <

X
A I t

_ X
A I A  

+ K (A ) ~ (exp I (a(t) - K (r ) c 2 (r )q~~~( T ) ) d r )c(s)

.q~~(s)(dz(s) - c( s)~ 515
ds).

By (21), it follows that

______
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x ( Aj t )  = x ( A j A )  + K (A )  ~ (exp I (a(i)  - K( r ) c 2 (T )q ~~ ( T ) ) d T

.c( s) q~~ ( s ) ( {Z ’( s)dZ( s )J 12 - c(s) i~( sJ s ) d s ) .  (24)

We note that the conditional probability distribution of x (A)

given is Gaussian. From Theorem 5, it follows that p (X 1Z t ) is a

folded—Gaussian density and hence unimodal. As in the filtering case,

X(Ajt) = exp (x(A ~t)R). (25)

Substit uting (24) into (25) thus yields

X(A It) = X(A JA ) exp (RK(A) ~ (exp I (a(r) -

c(s)q ‘(s) ([Z’(s)dZ(s)]
12 

— c(s) f[X’(-rIr)dX(rIr)]12ds)}

wh ere we have used the identity x ( s l s )  = f

Summarizing what has been shown , we obtain the following theorem.

Theorem 7: If the signal process and the observation process are

the same as in Theorem 5, then the optimal estimate, X(AI-t),

0 < A < t , in the sense of (52), is given by

X (X ~ t) = X (X~A) exp {RK(A) ~ (exp I (a(T) - K(y)c
2(r)q~~(r))dt)

c(s)q~~ (s) ( [Z ’(s)dZ(s) ] 12 
- c(s) f

where X ( T I - r ) ,  K ( t )  can be obtained from (22) and (23) .

The conditional probability density of X(A) given Z~ , the expected

errors E ( $ ( X ( A) , X ( A t t ) ) ,  the stochastic equations for X ( A I t )  for fixed—

point smoothing, fixed—lag smoothing, and fixed interval smoothing can

all. be easily obtained by straightforward computations which are left

to the interested reader . 

~~~~~~~~~~ 
- .. - ---- - -- 
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IV. 4. Random Initial State .

In the previous subsections , the initial state of the signal

process X has been assumed to be X(0) = I , the identity matrix . This is

obviously not a practical assumption in some applications. In this

subsection we will consider the case in which the initial state is

a random variable. We will denote the signal process by Y in this sub—

section , and assume tha t Y(O) = Y is a random variable independent of

the observational noise w.

We observe that the input to the observation process (15) at

titne it is not the dynamical state of the signal. It is the angle that

the rotational process represented by the signal has swept over the

time interval [O,t]. Taking this viewpoint, our present prob lem can be

solved through the previous ideas with some modification.

Let y(t) denote the angle through which the signal Y has swept during

[O , tJ .  It is easily seen that
t

y ( t )  = I / Y’(s)dY(s)]120

Define a rotational process X by

X ( t )  = Y 1 Y( t )
0

Then X(0) = I and , as before, we may define
t

x(t) = (f1
(X)) (t) [ f X ’(s)d X (s ) ] 12.

0

Note that x(t) = y(t). In other words , the angles swept by X and

by ‘1 over [0,t] are the same. Hence (15) can also he used as the

observation process f or our present problem . The conditional distribution

of X (A) ,  given observation Z~ of the form given in (15), can be determined

by application of the previous results.

_____________________________________ ~~- - -~~~~~
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We note that Y0 and X(A) are conditionally independent given

Z~. If the distribution of Y
0 and the conditional d i s t r ibu t ion  of

• X( A )  given Z~ are both folded normal , then the following lemma easily

leads to the conclusion that Y( X~t ) ,  the optimal estimate of Y(X) given

Z~, is equal to Y X(AIt) . Here is the mode of the distribution of

and X (A ~ t) is the mode of the conditional dis t r ibut ion of X ( X )  given

zt.

Lemma 4: Let A and B be two independent random 2 x 2 orthogonal matrices

each of which has a folded normal di8tribution with modes A and B

respectively.  Then AB is a random 2 x 2 orthogonal matrix which has
“a

a folded normal distribut ion with mode AB.

Proof. It is easily seen that  there exist unique real—valued normal

random variables a and b such that Ea, Eb are in [-rI,rr) with A= exp Ra, and

B = exp Rb. Then AB = exp R(a+b). Obviously a-4-b is a normal random

variable .  Hence AB is folded normal and the mode of AB is exp[RE(a+b)]

exp [R E ( a ) J ~ exp [RE (b ) ]  = AB .

IV. 5. Multichannel Estimation.

The results of the previous subsections can be extended to the large

class of problems involving processes evolving on abelian Lie groups.

It is well known [341 that a given connected abelian Lie group C is

isomorphic to the direct product of a number of copies of the circle

and a number of copies of the real line, i.e.

G~~~~R
5 

x (S1)
ni

- - -------
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where ($ l)m is usually ca lled a “torus .” The d i f fus ion  processes on

this type of space have been used to model some interesting satellite

and pendulum systems in [54]. Analogous to (14), a bijective mapping

~~~~~~~~~~~ 
4(c~)~ x (C~ )m 

is d e f i ned by

nm~~~~~
( t)  = [a 1(t ) , . . . , a (t) ,  (J(a~~ 1) ) ( t ) , . . . , ( J ( a ~~~ ) ) (t ) ]

f or a ~ (C~)~~
m
, a . being the ith component of a. Thus a ‘ ontinuous

random signal process on G which is described by an A—measurable

function X:~} -~ (C~)
5 x (C~ ) m cor r esponds to a unique continuous random

signal process on R~~~
’ which is described by an A—measurable function

x:~2 -~(C~ )~~ ’ such that

X ( t )  = 
nm~~~~

(t)
~ 

tc[0,SJ.

The mathematical model for the sensor can be obtained by f i r s t

using J to inj ect the following vector random differential equation

into R~X(S
l)m

dz(t) = m ( x ( t ) , t ) d t  + dv(t) (26)

z (O ) 0

and then differentiating Z(t) = (J (z))(t) by the s tochast ic  differ-

entiation rule to obtain a set of stochastic differential equations. The

first n of these equations are the same as the first n equations of (26)

and the last m equations are bilinear 2 x 2 matrix differential equations

having the form (15). This calculation is straightforward and so we will

not display the resulting equations. Because of the bijective property of

~nm ’ it is clear that the estimation analysis in the previous subsections

can be easily generalized to this general abelian case with little modifi—

cation. For the special case in which x is a linear diffusion and 

~~—- --- - --~~~~~~~~~ -- - ------- ---~~~~ - - -~~~~~~~~--- - - - -~~~~- - -——
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zn(x(t),t) is a linear function of x(t), what has been shown is that the

applicab— 1tty of the celebrated Kalman-Bucy filter includes estimation

on abelian Lie groups .

V. DISCRETE-TINE ESTIMATION ON COMPACT LIE GROUPS

The results of Section LII can easily be generalized to problems

on compact non-abelian Lie groups by introducing a similar exponential

Fourie r densi ty (EFD) on the group. Th is density is obtained by using

a sequence of irreducible unitary representations which form a complete

orthogonal system on the compact group . It can be shown tha t  a cont i-

nuous density funct ion on the group can be approximated as closely as

we wish in the space of square integrable functions by such an EFD.

As with the circle case a consequence of the group structure is that

the class of EFD ’s of a certain finite order on the compact Lie group is

c losed under the ope ration of taking conditional distributions . It will

bec ome c lear in the sequel that it is exactly this closure property of

the EFD’s that yields simple estimation schemes in which the ~~quential

conditional densities are updated by recursively revising a fixed finite

number of parameters .

In order to illustrate how the conditiona l density can be used to

calculate the optima l estimate on the group , a rigid body attitude ~sti-

mation prob lem is solved as an example. The error criterion , the optimal

estimate, and the estimation error with respect to the criterion will

be discussed for a given probability distribution .

- - - - - - - ---- ~~~~ • . - 
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V. I. Compact Lie Groups and Their Matrix Representations.

We begin by summarizing some de f ini t ions  and preliminary results

to be used in this section. The reader is referred to 135 ]-r37J for

details .

Definition. A differential manifold M of dimension n is a Hausdorff

topological space with the following properties : (a) For every element

m € M  there are an open set U containing it and a homeomorphism y:U-9VC R’~, 
•

called a chart. The set V is called a parameter domain. The components

of vector y(m) are called the coordinates of m, (b) For any two charts,

y1 
and y2, defined on U1 

and U2, the composition y2°y 1
’ defined on

y 1(U
1

f l U
2) is smooth (i.e., infinitely differentiab le).

Definition. A Lie group G is both a differential manifold and a group ,

wh ich is c losed and connected , such that the group operations are smooth

in coordinates. If t he group is covered by f inite number of bounded para-

meters domains through their charts , then the group is said to be compact .

Definition. - An m x m matrix representation of a Lie group G is a sub-

group F of the nonsingular m x m matrices together with a homomorphic

smooth mapping D of G onto F. That is, for each a, bEG , there is an

element D(a)cF such that (a) D(a)D(b) = D(ab), (b) D(e) = I, and

(c) D(a~~)=[D(a)]~~. We write dim D = m. The representation is said to

be unitary if each matrix in F is unitary . Two such representations

and D2 are called equivalent if there is a nonsingular m x m matrix $

such that $D
1(a ) = D2(a)$ for each aeG. A reducible representation

is one that is equivalent to the b lock form,
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D( a) = ~ D
1(a) C(a)

[0 D
2(a) ~1 ,

where D1 and D
2 
can be shown to constitute representations . If a repre-

sentation is equivalent to such a block form with C = 0, it is

called completely reducible. It can be shown that a reduc ible unitary

representation must be completely reducible.

Definition. We delete from some of the parameter domains their inter-

section with others so that the points of the resulting domains are in

1—1 correspondence with the group elements. Then the integral

If(x)w(x)dx of the function f with respect to the weight function w is

well defined . It can be shown that a weight function w, unique

except for a normalizing factor , can be found such that this integral

is left invariant , e.e., J’f(p)w(p)dp = J’f(ap)w(p)dp for any continuous

function f and any group element a. On a compact Lie group the integral

- 

- 

is also right invariant and is written as j’f ( g)dg .

Theorem 8. Let D1(a) ,  D2(a),..., be a family of inequivalent irreducible

unitary representations of a compact Lie group. The matrix elements

of these -epresentations satisfy the orthogonality relations

ft~1 (g) D~~(g)* dg = (fdg/dim (D’~
) ) 4

~k
S
ij~~~.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-48-

Theorem 9. (Peter—Weyl) A continuous function on a compact Lie

group can be uniformly approximated by a linear combination of the

matrix elements ~~ of the unitary irreducible representations of

the group.

V. 2. Exponential Fourier Densities on a Compact Lie Group.

1 2Let us denote by D , D , . .. ,  a collection of irreducible,

inequivalent , and unitary matrix representations of a compact Lie

group G, which are of dimensions n1, n2, respectively. We

define an exponential Fourier density of order N, to be denoted by

EFD(N), on G as a probability density of the form

N n~ L L
p(a) = exp ~ E a~ .D . - (a) =

~ =O l,j=l ~

N n
~€exp( Z E a . D..(a)+ a )

.~-l i,j=l ‘-~ 
iJ 00

where a° is a normalizing constant and all other coefficients a!
00 ij

are arbi t rary complex numbers. The double summation notation above

will be abbreviated by Z. The norm of a function f in L2 (G) will be

denoted by II fH ~ çr~f~~g)~g)
l/2

•

Theorem 10. Let p be a probability density on a compact Lie group G.

Assume that p is cont inuous. Then for any given positive number c,

there exists an EFD, = exp E a~~D1~
’
~ such that IIp—p ~ I < c.

Proof : ~~sume that 

- - - - —~~- - -- - -
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inf{p(x) : xcG) = c > 0. (27)

This assumption will be removed later. We note that f(x) = j.n p(x)

is then well defined and also continuous on C.

j Since G is compact , in view of the Peter—Weyl Theorem ,

for  any 0 < 6 < 1 there is a l inear comb ina tion of D’, say

f = ~ a L (6)D1 , such that I I~ ~— f I < 6 . it follows that
6 mn mn ó

IIf 6 II ~ 
< ‘ ÷ If IL. = :M. 

1Define a function g:R -
~ R by

— 
(exp x , x<M

g(x) — •~ 
g(x) = exp mm ~~~~

exp M, x>M

and an operator g on the set of real functions on G by (~ u) (x )  = g(u(x)).

It is obvious that g satisfies the Caretheodory conditions [38,p.2O] and

g transforms every function in L2(G) into a function in L
2(G).

By Theorem 2.1 of [38 ,p.22], the operator g is continuous. Hence

given any c>0, there exists a 6 >0 such that if Hf8—~I I < 6 , then

I Ig f ~~~—gf I I < c. Then jexp f 6 — p 1 1 = r~f 6 — g f I I  < €.

Now let us remove the assumption (27) and assume that

inf{p(x):xcG} 0. Let c be an arbitrary positive number. Set

and p1(x) ~ p (x) + c
1/V , where V is the volume of G. The function p

1

sat isf ies  (27) .  Hence there is an EFD(N), exp f , such that  I l exp f —

p1f I < c . By the Minkowski inequality ,

I lexp — p 1 .~~ I I exp f -p111 + I 1p 1—p I I ~ + £ 2 = c. (28)
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So far we have shown that for any £>O , there is an EFD(N),

exp f, such that IIexp f— p f j < c. We note that exp I is not

necessarily a probability density function. In the following it

will be shown tha t the exponential Fourier density obtained by

dividing exp f by fexp f(g)dg can be used to approximate p as closely

as desired .

Let p
1 

exp f and p ~ p1 /fp 1
(g)d g. Then

II ;l-;II = [f( pi (g) - ;1(g)) dg] 
1/2 

(29)

f p1(g)dg

= l,!;
1
(g)dg—lI (fp~~(g)dg) l/2

.~ . I l / /p 1(g) dg—1j TV exp M.

By the Holder inequality,

I l— !;
1

( g) d gl  = f (p(g)—p 1(g))dg ~

~1/p(g) ;1
(g) dg

2 1/2
< (f(p(g)—p1

(g ) )  dg) ~~~~~

Hence, !; 1
(g)dg > i—N c . Substituting these two inequal ities into

(29) ,  we have I 1p 1— p I I < (V~/(l—AT~)) exp M. By the Minkowski inequality,

(28) ,  and (29),

< II;— ;1H + II ;1— p H < v ~ exp M + c =:c .

1-Nc

We observe that c can be made arbitrarily small by setting c sufficiently

small. This observation completes the proof of the theorem.
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V . 3. Estimation for Processes with Noise on the Lie Group.

Suppose that the signal process 5k and the measuremen t process

both evolve on a compact Lie group C and are related by

m
k

v
k 

0 5k (30)

where V
k 

is a noise process , also evolving on C and o denotes the

group operation. Our reason for writing v to the left of s is to be

consistent with the corresponding matrix equation obtained by the use of the

orthogonal matrix representation : the matrix S representing s is

premultiplied by the matrix V representing v to obtain M = VS.

We now consider a signal process S
k 
which is governed by the

equation

5k+l = S
k (31)

where w is a sequence of known elements on C. If s is a random

variable taking values on C, an interesting estimati:n problem is to

find an effective way to recursively compute the conditional density

of 5k 
given the set of measurements , ~~ ~ {m1,.. . ,m~ , k1 , 2,...

The EFD’s introduced previously are ideal to use in solving

this problem on many compact Lie groups such as the three dimensional

rotation group , SO(3). However , for a reason to be discussed later ,

it is more convenient to include the complex conj ugates ~~~ of the

harmonic functions in the EFD(N). Thus an EFD(N) in this subsection

will be a density function in the form

p(a) = exp E (a~~D-’~(a) + bAD~j
( a ) ) .

L ~~~~~~~~~~~~~~~~~~~~~~~ - - -  — - - — - ——~~ - - ~~----~~~• -•- - - - - - -—- - -~~-— - -----• — - - - ~~~~~~~~-
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Suppose s and V
k 
have EFD(N)’s (if they have different

orders, we can let N be the maximum order and , by inserting zero

coefficients , make all densities of order N) which are described ,

respectively, by

p(s0 ) exp ~(a~~
0 D

L
(s0) + bL DL~~ (s0 ) )  (32)

— 1 k  1 -~~~ 2*p(v
k
) = exp E(a D

mn
(v
k
) + bmn D (vk

) )  (33)

We claim that if the conditional probability densities ,

p(s
klm

k) ,  k l ,2,..., are all EFD(N)’s, then we need only keep
N

tra ck of a f ixed f in i te number , ~ n~ , of parameters for
1=1

updating the conditional densities . The proof is by mathematical

induct ion.

For k=O , p(sk lm
k) is obviously an EFD(N), as p(s lm°) =

p(s0). Let us assume that the conditional density p(s
k l lm

k_l
) is an

EFD (N),  denoted by 
-

k—l l t ,k—l 2 22 ,k—l 2*m ) = exp ~(a D ( sk l ) + amn 
D
~~
(sk_l ))  (34)

We will now show that p(s
klm

k) is also an EFD(N) and at the same

time exhibit a recursive formula for the Fourier coeffieicients

iLk 22ka and amm mn

From (30) , (31) and the group property of C, vk and 5k—l

can be expressed as

L.
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= m
k
o ~—l and 5

k—l 
= w

kl  
0 S

k

Thus, using (34), p(s
k jm

k_l
) is an EFD(N):

p(slm
1) = exp ~Ia

iL
~
k
~~D

L (w~~ 0 s ) + a2 L
~

k_ l
DL* (w~~ os )1Ic inn inn k—l k sin mm 

k—l 
k

1 L k 1 ~~~
2 £ 2

= exp ~[a ’ 
~~~~~~ 

D i(w
k
1
1

)D i (sk
)

÷ a
22
~
k
~~ F~~D!(w~~~) D~

*(s
k)J

= exp~ {[~~ a ’~~~ D~ (w
~~ i

) ]  DL (s
k
) ÷

22 k—l 2 * —l 2*
j n  Djm (w

k...l
)]  Dmn (sk)l (35)

The second equality holds because D is a matrix group repre—
2 2 2sentation so D (g

10g 2 ) = D (g
1)D (g2).

The following calculation shows that P(m
kls k
) is also an EFD(N):

i ILk £ — l 22L2 * —IP(m
klsk

) = exp E~b D ( m
k 

0 S
k 

) + b 1
~mn (m , 5k ~

exp E {[ L b~~~ D~~
(m
k

)]  D~~(s~~) +

( E  ~~~~ D; (m.K ) j  D
.L 

(s~~ )l

= axp ~{[z
L
b~~~ D

j~
(m
k

)] D
~~~

sk
) +

[ E
2 

b~~~ D;: mk 1 D
L (s

k)} 
(36)
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The last equality holds because D is a unitary matrix repre-

sentation so D~(g
1
~) = [D

2~g)]
*
.

We note that the complex conjugates D
i~n 

are included in the

EFD ( N ) ’ s in this subsection just to ensure that the above expression

be an EFD(N). On many compact Lie groups , the complex conjugates

1*Ir are unnecessary. For instance , on the three dimensional rotation

gr:up we have D
1
(g~~ ) = (_ 1)~~~fl 

~~~~~~~~~~ m ,n=—l,-L+l ,..., ~~~, where

the complex conjugates are avoided.

Substituting (35) and (36) into the Bayes Rule , we obtain

k k—ip(s
k In ~ 

= c
k 
P(s

k Im ) p(mk ls k)

°~~ k—i ~‘ — l 22k 2*
= c exp E{ ~ [a. ‘ D. (w ) + b D (in )1 D (s )k 

j 1  
jn jm k—l ji~ jn k inn k

+ 

j=l 
[a~~~

(l
D~rn 

(w
~~ l

) + ~~~~ Dj
L
n

(Tfl
k

) ]  
~~~

which is an EFD(N). This completes the proof of the following :

Theorem 11. Let the signal and the measurement processes , 5
k 

and

on a compac t Lie group C be governed by

S = W  O S
k+l k k

m = v  o S

Here W
k is a sequence of known elements on C and ~k ’ the measurement

noise process , is a sequence of independent random variables taking

values on C. Suppose the probability densities of s and vk are

EFD(N)’s described by (32) and (33). Then for k l , 2, . . . ,  the

conditional density p(sklm
k) is an EFD(N) of the form
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k ilk 2 22k 2*p(skIn ) = exp ~ (a D ( s
k
) + a D (s

k
))

The coefficients ~~~~ and a2~~ are determined recursivelysin sin

by the formulas

1 k fl
2 i2 ,k—1 2 —l Zik 1*

a = ~ [a . D (w ) + b  D
j =l J~ j m k—i jin jn (in

k
)]

2 k “2 22 , k—l 2* —l iLk £
a = E [a D . (w ) ÷ b . D . (in. ) ]sin 

j=1 
jn  jm k—i jm jn  ~

ok
and a is a normalizing constant.

00

V. 4. Estimation for Processes with Additive Noise.

In this subsection we will consider another model for which the

estimation problem can be solved using EFD(N)’s. Suppose that the

signal process S
k 
evolves on a compact Lie group C according to the

equat ion (31) and it is observed with additive noise v
k 

through the

p—d imensional vector—valued measurement process m
k,

in
k 

= h(sk
) + Vk

Here h is a given square-integrable , p-dimensional vector-valued function

on G , and vk is a sequence of p—dimensional independent Gaussian

vectors, each having zero mean and with covariance matrices E(v
kvk)=R.k

.

The completeness property of the functions {D2~~} assures us

that , for any c>O and for each component h~ of the function h, there

exists an integer M . and coefficients h~~ such thatsin 
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II h~ s - E~ ~L ~~~ D~~(s)II 2 < c, j=l , 2 , ... , p.
2= 1 m ,n i

Le t M = max M . and deno te by h
M
(s) the p—dimensional vector whose

3 3

M n 2 Lj 2 “2  £
~ 

2
j t h  compone nt is ~ ~ 

h D (s) ~ ~ h D (s),
2 i  m ,n=l 2=1 m ,n i

with h
2
~ ~ 0 for 2 > M.. For abbreviation , we will denote the

in 3

double summation notation by ~.

Since the function Ii is a mathematical description which is necessarily

an approx imation of the physical phenomenon that it descr ibes , we may as

well  use the equation in
k 

= h
M

s
k
) + V

k 
to represent the observation

of the s ignal S
k •

Each noise vector has density

p(vk
) = (21T)~~~

’2
(det R

k
)1”2 exp [— .

~~
— E R’3 v~ v~ ]
i,j=1 k

where Rk has components R~
3 and has components v~ • By subs tituting

ink - “M~~k~ 
for V

k 
we obtain

= (2n )~~~/2 (de t ) h / 2

exp ~~~~~~~~~~~~~~~~~~~~~~ D:fl(sk)J x rm ~
_ E h ~~ D (s k ) l

~

(2ii) ~‘ (de t R
k

) exp (C
0 
+ 2 C

n
D ( S

k
)

M nL nL ’ U’ I
+ E E E C (m,n ,m ’ ,n ’)D (sk)D~~

, , ( sk)}L ,L’ =l m ,n 1  m ’ ,n &l
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Here ,

~ i j i  j
C
0 

= -1/2 

~~~~~~ 

R~ in
k 

m
k

a P ,~~ -, j  4 j
C~ = 1/2 ~ R ~ [m~ h UJ 

+ in h -~inn . k k inn k sink ,j =1

LI ’ i-’ Lj L’ 4C (m ,n ,nl’n ’) = — 1/2 ~ R,,~’ h h ,
‘
,.

i ,j=l inn m m

We note that if the product function , D L ( sk) D2, ,  
~~~~

can be expressed as a linear comb ination of finitel y many harmonic

functions , DL (S
k

) ,  on C , then p (mk lsk) is an EFD of f in i t e  dimension .

Fortunately , this is indeed the case. The product function DL D~ , ,  is a

component of the direct produc L , D x D , of D and D , which is

itself a representation of C [35 ,p.79]. As every f in ite dimensional

representation of a compact Lie group is equivalent to the direct sum

of a finite number of irreducible uni tary  representations [36 , p.3331, 1 ~

• the component D2 D2, , of the finite dimensional representationinn in n

x DL
’ 
is indeed a linear combination of finitely many D1 ‘s, which

we write
M n .

~L b~ , , = ~ Z’ A
Lmn

sin in n . . , , , (i,j,k) D
i=1 j,k=i x in n jk

The X’ s are constants and M is the maximum superscript of all the irreducible

unitary representations which appear in the above mentioned direct sui~.

It was shown in (35) that  if p(sk l (m ’
~~
1) is an EFD(Nk l ) ,

then p (skln
k l ) is also an EFD(Nk l ). Therefore if p(sk l lm

k_l
) is

an EFD (N k l
) ,  the conditional density p(s

klm’5, which is equal to

ck
p(skIm

)p(mlJ ~k~’ 
is an EFD(max(N k..1 M}). Thus if p(s0) is

an EFD(N) given by (31), than p(skln
k) will also be an EFD(max lM ,N~~)
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for all  k = 1,2 The recursive formulas for updating the coefficients

a 2
~ can be easi ly obtained by straightforward but ted ious calculations which

are omitted here .

As remarked above, the determination of X~~”, ,  ( i . j . k)  depend s

on the decomposition of the direct product D 2 x D2 of irreducible repre-

sentations and D2 . Such a decomposition is not always easy but ,

fo r tuna te ly ,  such decompositions have bee n thorough ly studied and documented

for many special groups including S0(3). The interested reader is referred

to 140 , p. 80] and 139, p. l55 J for fur ther  discussions and references .

V. 5. An Example - Orientation Estimation of a Rigid Body Rotation.

The state space of a rigid bod y rotat ion is the three dimensiona l rota-

tion group denoted by SO(3). A common way to parametrize this group is to

use the triple of Euler Angles (4,8, $ ) ,  0 ~ +< 2ry , 0 ~ 8 <1!, 0 � 4r < 21! .

Thus , each element of SO(3) is expressed uniquely as the result of a sequence

of rotations through these angles about the z - x - and z - axes .

We will use a sequence of finite d imensional unitary representations

2 = 0 , 1, ... } attributed to E. P. Wigner. The components are

described in f35. p 144] by

L __
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D L (4 , 8,~~) = ~m~ n e~~ m+ d L (8) e~~~~

with

dL (t3 ) si n
fl_si

O ( l+cose)in 
[ (L _n) !

1~~~ (co se _ l) L
~~~(l + cos0) UI

2 L [ ( L + m ) ! ( L ~m ) ! ] h h’2 (14-n)! 
d(cosO~~~”

where in and ii are intege rs such that  — 2 <  m , n < . The functions

D1 form a complete orthogonal system in the space of square integrable

funct ions  on SO( 3) wi th  respect to the inner product

<f 1, f 2 >= ff 1(g)12 (g)dg

— 
2ir v 2ir

— 

—ti ~ ~ ~ ~~~~~~~~ f
2
(
~
,0,

~
) sin 0 d~dedj,.

81T 0 0 0

An EFD(N) is a probability density on S0(3) of the form

N 2 I I
p(4,0,~p) = exp E E a D (4,0,~ )a iflfl inn

-~~0 m ,n’— L

where a0 is a normalizing constant. By TheoremlO , any continuous

probability density function can be approximated as closely as desired

by such an EFD(N) in the aforementioned inner product space.

Let us now consider the following estimation problem : The signal

process Sk is a sequence of random rotations on SO(3) which satisfies

5k+1 = W k o 5k , o denoting product rotation , for some sequence of known

rotations wk . The measurement ink is a concatenation of the signal Sk

and the rotat ional  white noise Vk~ 
i. e. mk 

= ° 5k~ 
Suppose it is known

that s and V
k 

have EFD(N) ’ s which are described by

_ _ __ _ _ _ _  _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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N £ 2 0 £
p(s )  = exp E a D (s )

0 inn inn 0
L- =O m ,n — L

N
p( v ) = e x p  ~ ~ b~~~ D

2 (v) .k n aln inn kA~=0 m ,n=— -~

We would like to find the optimal estimate of 5k 
on SO(3) given the

measurements = (in1, ... , m~ } with respect to an error criterion

• which provides a measure of the deviation of the estimated orientation

of the signal rotation Sk 
from the orientation of the signal rotation

itself.

Following the calculation in the subsection V.3, we can show

that the conditional density p (sklm
k) is an EFD(N) of the form

k 
N 2 t k L

p(s in ) = exp ~ a 1) (s )
k 4mn inn k

~~u m ,n — x ~

where the coefficients a~~
’ are determined recursively by the

mm

formulas

a~~ = E [a ~~’~~~~D~ (w~~ ) + (1)m+%~~ D~ (in )}, (32)inn j~~~L jn  jm k-i 3,—rn j, -n k

I ~ 0, k=l, 2, .. -
Ok .and aW is a normalizing constant. These formulas enable us to

calculate the sequential conditional densities by updating recurs ively

a finite and fixed number of parameters.

In order to define an error criterion for orientation estimation ,

it is necessary to have a measure of the distance between two orienta-

tions. We will first describe such a measure, using quaternions [411.

We recall tha t a rotation about an axis in the direction of a unit

vector ( I ,m ,n J ’  through an angle • is represcntcd by the (unit) quaternion
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q = [q 1,q2,q3.q4]’ = [cos , 2Sin ~~, msin ~~, nsin

Given two orientations, the minimal angle in radians required to

bring one into the other is a na tura l  measure of distance between them

and defines a Riemannian metric on SO(3). If the orientations are

represented by the quaternions , q and p, and the minimal angle is denoted

by p(q,p), then we have q’p = cos p(q.p). As (l-cos p)/2 is a

monotone increasing function of p, a measure of distance between p and q

•~lcan be defined to be (1—cos p(q,p)j2 l— (q p) . It can be shown

that if the orientations , q and p, are described by the 3 x 3—dimensional

orthogonal matr ices , Q and P , then this measure of distance can also be

expressed as (3—tr  PQ ’Y 4 .

We are now ready to define the error criterion for orientation

estimation. Let q be a randoni quaternion and p its estimate. Then a

measure of the estimation error is

J(q,p) = E(l—(q p) ).

If th e probabil i ty dis t r ibut ion of q is given , the estimate p

which minimizes J may be obtained from observing that

J(q,p) l—p ’ E(qq’)p.

It is well known that the quadratic form p ’Vp of the positive definite

matr ix  V E(qq ’) is maximized over unit  vectors p when p is art eigenvector

associated with the largest eigenvalue X of V. Moreover, the maximum value

is X

Hence,

win J(q,p) — 1 — q ’E(qq ’)q
p

= 1 — A

where
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A = the maximum eigenvalue of E(qq ’)

q = the unit  eigenvector of E(qq’) associated with A.

Using the conditional density p (sk lm
”
~
) that is computed

recursively through (32), the optimal estimate of the orientation

can then be determined as follows . First  compute the cond i t iona l

covariance matrix E(q(k)q ’(k) Ini’5 where q(k)  is the quaternion for

whose components expressed in terms of the Euler angles are given

below : o
= cos cos

0 th—th
q2 

= sin cos -‘.~z-

= sin sin2 2

q4 
= cos sin (33)

Then use some standard numerical method to compute the largest eigen-

va lue X (k)  and the associated unit eigenvector 
~(klk) . The Euler

ang les (~~,O,*) of the optima l estimate may then be determined from

~( k I k )  through the equations ,

cosO = 2 (q1
2 
+ q

4
2) — 1, 0 < 0 < -i~

sin~ = 

~~ ~~3’~l 
÷ q 2 q4) ,  cosq = (q~q~ 

— q
3
q
4
) 

.•

sl nij, = 1 (q2q4 
— q1q3) ,  cos~ji = 

~ ~
q1q2 

+ q 3q 4
)

with

~~= [~~~~2 2 ~~2 2
(q
1 4- q4~~~q2 + q 3 )

This simp ly inverts set of relationships (33). The estimation error

is l-X (k). 

—-~~~~~~~•- —- •~~~
_---• -- 
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VI. DETECTION FOR CONTINUOUS—TIME SYSTEMS ON LIE GROUPS.

The idea of “rolling without slipping” introduced in Section IV

will now be generalized and used to formulate an observation pr oce ss

on an arbitrary matrix Lie group. Briefly’ we will inject

the differentials of an observation process described by a vector Ito

differential equation into a Lie group via the exponential map and then

piece them together . The resulting product integral describes our

observation process on the Lie group. The injected vector observation

process is called its skew form.

The observation process thus constructed on a Lie group will be

seen to satisfy a bilinear matrix stochastic differential equation ,

when its skew form is linear. The observational noise can be viewed as

entering multiplicatively.

Given an arbitrary bilinear matrix observation process , we will

show that  the corresponding skew observation process can be ob tained by

“reversing” the above injecting procedure. Further, these two

procedures will be seen to induce two “almost sure” bijective mappings

between a vector—valued and a matrix—valued function space , one being

the inverse of the other .

It is well known that the study of a Lie group may be greatly

simplified by considering the tangent space ( the Lie algebra) of the

Lie group at its identity . In fact , the local study of a Lie group is

entirely equivalent to the study of the algebraic structure of the

Lie algebra. In this paper , the above bijective mappings facilitate

similar simp lification . It enab les us to evaluate the likelihood ratio
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in a finite dimensional linear space--the Lie algebra s

In view of the abov e construction , the nu ll and the alternative

hypotheses that the signal is respectively absent and present in the

observation on a Lie group can be written in terms of a pair of

bilinear matrix stochastic differential equations . Using the bijec-

t ive mapp ings, we may transform these hypotheses on a Lie group into

those on the corresponding Lie algebra. There the likelihood ratio

can be expressed by the well-known formula in r43] and [44]. Thus

the likelihood rat io on a Lie group can also be evaluated through

least-squares estimation .

When the signal is a linear diffusion process, the idea of using

the bijective mappings to work in the Lie algebra also leads to a finite

dimensiona l filtering equation for evaluating the least-squares estimate.

This equation is indeed an immediate extension of the Kalman-Bucy filter

to the case of observation on Lie groups .

I
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y j 1~klsiost Sure Representation of Continuous Curves on Lie Groups.

Let ~~~~ denote the set of real n x n matrices and

{R1,. . .,R }  a basis of a Lie algebra L in R
flXfl 

. Then the set

C {M : H = exp (A
1) exp(A2

) ... exp CA,~) ; A1 C L ,

I = 1,... ,k ; k = 0, 1, ... }

is an rn—dimensional Lie group related to L by a one—to—one map •M 
from

a neighborhood of 0 c L onto a neighborhood of M c C. The map is

defined by

= exp (A)M , A £ L

A continuous curve in G is usually represented by an mXm -rn at r ix-

valued continuous function on a closed interval T 10,s] of the real

line. In this section we will show that, under certain assumptions , a

continuous curve in G starting from the identity element I c C can

also be represented by an rn—vector—valued function on T in a certain

“almost sure” sense. -

We will use the following notation: :

C~ = the family of continuous rn—vector-valued functions,

a , on T with initial value a(O) = 0 ,

C
g 

the family of continuous m x rn—matrix—valued functions,

A , on T such that A ( t )  is in C for each t in T and

with initial va lue A(O ) — I ,

the Borel a—field of In the uniform topology, 

-~~~~~~ -~~~~~~ --~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~ 
— --- - .--
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~

3

~~

— the Borel ~—fie1d of C8 in the uniform topology,

w — a standard p—vector Brownian motion on a probability space,

(CL,4,P)

— ~~~~ -, )

[ ] — “the integral part of”

Lower case letters will denote elements in CL and upper case letters will

denote elements in C8.

Let y be an rn—vector stochastic process on T satisfying the

following Ito differential equation :

dy(t) = f(t)dt + Q~(t)dw(t) (34)

where f is an rn—vector stochastic process on T and Q~~ 
: T -‘ RmXP is

Borel—measurable and bounded , i.e.,

1 IQ ~~~~( t )l 1

2 

~ tr  Q4(t ) (Q~ (t ) ) I  ~~~ , fo r t. E T .  (35)

Let K : C -
~ C be defined byn I g

(M(a))(t) = I (t = 0) (36)

= exp [ ~ (a (t) 
— a (i2~~ ) )R ](H~(a))CL2~~)

j
(t ~ 0 , £ = (2’1t])

for a = [a1,a2,.. . ,a ]  c Cj . -

Let K(A) 
~ 

y (A)R ~ (y-(t) 
— y (i2~~ ) ) R and Y ( t) ~ (jL(y))(t)

j - j

Then 
-

Y ( t) — Y (i2 ~’) (exp (K(tt)) — t)T
n

(L2
~~
)

Recall the following oscillation property ([45], p. 57),

~~~~*L~I1~~~~~~~~~~~~ -

- - - -
~~
------

~ ----— --- - - - -~~~~ - -- -
~~~
-- - - -

~
-
~- - ~~~ —--~ -~~~~~~~ -~~~--- - - - - • -~~~~~~~~-—•~----- - - • ~~
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~ 

~ max IlQ (t)II ] - 1 .  (37) J
O~t1

<t
2~
s

It is clear that up to terms involving K3(A) (of magnitude < 2 ’
~~’~) ,

Y ( t ) - Y ( 12 ”) (K(A) + 4~- K
2 (A ))Y (12 T5

By simple calculations,

~ Q
1 

(t)R
1
R 1~t

Ii 
j

Thus the definit ion of the Ito integral leads at once to the

conjecture that Y lim Y is the solution of
n

dY(t) = ( ~ R~dY~(t) + M(t)dt]Y (t) (3d)

M(t) = -
~~

- 
~~ ~~ Q1~

(t)R~R~
kj  (39)

Y(0) = I .

It is appropriate to remark here that the sequence of operators

H was first devised in [46] to construct Brownian motion on the three

dimensional rotation group, SO(3) , and later used in [~45~1 to construct

Brownian motion on a Lie group. Exactly the same trick was used to formulate

an observation process on S0(3) in [471- . In this paper, this trick together

with some techniques developed in [.47]vill be used , with little modification,

to t reat  a large class of detect ion problems on arbitrary matrix Lie groups.

Following closely the six steps taken in Section 4.8 of 1451 and

keeping in mind the assumption (35) and the oscillation property (‘37),

we come to the following conclusions: -

~

•

~

• _  _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Ci) There is one and only one solution to (3&).

(ii) The solution can be expressed as an almost surely

convergent series as follows:

Y =  
~n~~0

0 (t) = 
J 
(~R1

dy1
(r) + M (t ) dt ) 0~~ 1(t)

0
0(t) = I

(iii) The sequence {Y )  converges uni formly  on T to the

solution V of (38) almost surely. In other words, {H (a)} converges

uniformly on T to a continuous function H(a) C C
g 

for each element a

of a B1—measurable set B1 C C1 such that u ( B 1) = 1 ~ where ,21~ denotes

the measure on (C j , B~) induced by y.

The operator H = lim H is the so—called product integral

operator , which is usually used to solve matrix differential equations

(see, e.g., (4~) and (49]). Its application here to construct random processes

on a Lie group by the use of random processes on its Lie algebra yields

a random matrix differential equation (3&), which is a global representation

of the constructed random process on the Lie group rather than usual local

representations for random processes on differential manifolds and Lie

groups (see, e.g., (50] and [~.L]). This feature is obviously important

in order to draw useful results for engineering purposes , as a sample

path of a diffusion process may possibly zigzag across the boundary of a

coordinate neighborhood infinitely fr equently over a fixed time interval

([13], (14]).

_ _  _ _
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We finally remark that the nonlinear diffusion x which satisfies

dx — g(x,t)dt + a(x,t)dv

falls into the range of random processes y defined in(34).
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In the following we will consider the converse problem of inducing a

random process on a vector space by a random process on a Lie group. More

specifically, we will construct the inverse operator, 3 • of H by def in-

jag the appropriate “inverse” operator 3 of H

Let C denote the family of mxm--matrix—valued continuousm

functions which are representations of continuous curves on L

Let A C C and n be the smallest integer such that for all

n ~ n1 
and 0 ~ I 

~~~
[52

fl] ,

MAui + 1)2~~ )A~~(i2~~) — ~~ 1

Define K : C
g 

-
~~ Cm 

by

(K (A ) )( t ) = 0 , (t e T) , (40)

for n < n1 , and

(K (A))(t) = 0 , (t = 0) , (41)

= (K~~A).) (&2~~ ) + lg (A&)A~~~(i2~~ ))

~ , ~ = f t 2~’J)
for n ~ n1

Setting (K (A))(t) = ~ R~ [(K~(.A))(t)J~ , we def ine
j - 

—

3 : C  +C bya g 9.

(.J (A))(t) ‘. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ (42)

for A c C
g • We will now show that (J~(A)) converges uniformly on T

to a continuous function J(A) C C
L , for almost all A with respect to

the measure on (C
g~
S
g

) induced by Y , constructed previously. Let

____
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~~ {w C Q 1 11y U 2 _m ,w)y _ 1U - l)2~~ ,w) — I
~ I < 1)

— ~~~ I I I Y ( t , to)Y~~~~(L2~~~~,w) — I I I  < 1)

fl fli fl~~2
t

1=1

Recalling (37) and (38)~it can be easily seen that -

lim P(~~)= i . ’

For notational simplicity , we will denote (K~(Y))(t) and

~ ~~(t çt

(K(Y))(t) = — -

~~

- J M(s)ds + 
I 

(dY (s))Y (s)
J O

by K~ (t) and K(t) , respectively. Let

2.
~~~(t) 

~ 

I — M((i — l)2 ”)2 °

+ (Y (i2~~) - YC(i - 1)2~~ )) . Y 1
((j -

+ E— 4M L2~~)t — £25 + ~Y(t) — Y(~2~~ ))T~~ (L2~~ )J (43)

Then 
-

El 1K (t) - K(t)11 2 = E[tr[ (K (t) - K(t))O((t) -

~ E J J K (t) - ~ ( t ) JI 2 
+ E l I ~~~~~~~~(t) - K (t)11

2

(44)

Note that K (t) = 0 on (~ 
— Q by (bO) and the definition of . Hence

- 
~~~~~~ ( t) I I

2 
= J II K ~(t) - 

~~ ( t ) I I
2dP + J IIi~(t)lI 2dP. (45)~

By the definition of the Ito integral 
.

liifl E llK (t) — K ( t ) 1 1
2 

0 ~(46)

_ _ _  ~~~~~~~~~~~
—

~~
—---, - - =

~~
--~-
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It is easy to see

u r n  J ll ~~~~~~~
( t )I l

2dP ~ ills l {i ~~~(t) — K ( t ) l I 2dP + his J I I K ( t ) I I  2dP (47)
n-+~ fl—a n+° ~~

-+
~~~ 

ç~—~
n a

where the f irst term on the right hand side vanishes beéause of (46) and the

second term vanishes because ills P(fl — fl ) = 0 . Substituting (4l) and (43)
a

Into the first term on the right hand side of (45) yields

- ~~(t ) I l 2
~~ ~ J ii- 4 

~ 

M((i - 1)2~~) (i2~~- (i- l)2Th

+ (y(i2~~)f
1
((i — l)2~~) — 1)

2

- 4M(i25t - 12
_n

) +4 (y (t)Y~~(t2 5 — I)2I I d P

+ J ~f E (((-l)~~ /I) (Y( )Y~~ ((k - 1)2~5 -
c~ k—i i~ 3

+ ~~[((-i)
1’/i)(Y(t)Y

1
a2Th - I)1]H

2dP
i~3

With a view to (38), it can be easily proved that

u r n  I I I K (t) — (t)11
2dP = o (48)

n-~~’1 fl~

Combining - (44) — (48), completes the proof that

(K (Y))(t )  converges to (K(Y))(t) in quadratic mean. Hence there is

a subsequenc~’ ~n’} of {n) such that with probability one

rt  ~t

lim (K ,(Y))( t) (KC,fl)(t) — — 4 J M(s)ds + J (dY(s))Y~~(s). 
(49 )

0 o a

Then It is easy to see from (42)that (3
01 (A)) converges uniformly on T to

______ ____________ 

I:
______________ 
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J(A) = [[(K (A))(t)]1,...,I(K (A))( t))]’ C C2.

for each element A of a B —measurable set B 
~~ C such thatg 2 g

v (B2) = 1 . Furthermore, 3 is injective on B~ because the differential

equation -~38)wIth Y viewed as the unknown function has a unique solution

so t hat K(A 1) = K(A
2
) implies that A1 

= A2 , in view of (49)

Comparing (49) with (38),we see that for each a C 81 , H(a) is an

element of B
2

(B
1 C 3(B

2
)) and 3(11(a)) = a (3 = 11 ~) . We now come to

the conclusion that almost all continuous curves in C with respect to

v can also be represented by continuous rn—vector—valued functions on T

Summarizing what has been shown, we obtain the following theorem .

Theorem 1. Let i be the solution of (34) and let H~ :C1—~’.~~~and Jn g ~~~~z
be defined by (36) and (42). Then fHn(Y)J converges to Y H(y)  with
probability one , and ‘

~
‘ satisfies

dY(t) [~~ R~dy1(t) + 1/22 ZQIJ (t)R iRjdt] Y( t)
with initial value ‘

~jo)=I. Conversely, (J~(Y)) converges to y=J(y)
with probability one, and y satisfies the above equation too. In fact ,

almost surely. 
-

~~

VI.2. Hypotheses on Lie Groups and Evaluation of Likelihood Ratios.

The (almost sure) bijection constructed in the previous section will

be used to formulate a detection problem on a matr ix  Lie group G and to

derive a likelihood ratio formula as a function of the updated observation.

Let us first write down a pair of hypotheses on the Lie algebra L of G in

the form of rn—vector Ito differential equations :

________
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H11 : dy(t) — m(t)dt + Q~ (t)dv (t) - (50)

H00 : dy (t ) = Q~ (t)dw (t) . (51)

mxn
where Q : T -~ R is Borel—measurabhe and bounded,

l I Q ~ (t ) l l 2 
~ tr Q~ (t)(Q~ (t) ) ’  ~ C1 , for t £ T . -

The process y Is viewed as the skew form of the observation

process and it is injected into C via H . Applying Theorem 1 and

letting Y = H(y) , we obtain the following two hypotheses H
~ 

and H
0

on C correspond ing to and N00 , res pectively .

H
1

: dY( t) = ~ H m (t)dt + ~ B~ (t)dw (t) + M(t )dt ] Y( t) -

L i— i  j= i j  C5~)

dY(t) = B~ (t)dw
1 
Ct) + M(t)dt] y (t)

whers Y(O) = I

B ( t) ~ R
1Q~~

(t) - -

1 j_
~ 

I

M(t) = 4 ~ Q
1 

(t)R
1
R .

i—l i— i 
j

p

~

- -~~~--~~
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Let the measures on (C
g~
B
g
) induced by Y under H.1 and H

0

be denoted by v
1 

and V
0 

respectively. From the measure-theoretic view-

point, the detection problem is to evaluate the Radon—Nikodym derivative

dv1/dv0 in (Cg~ Bg
) assuming it exists.

Let the measures on (C2. ,89.) Induced by y under and

be denoted by u
1 

and 
~~~~~ 

respectively. We note ([43] , [44 ] )  that

if I m ’Q mdt < , a.s., (P) , t hen
Jo

(y) = e.xp{— 4j ~ ‘( t)Q 1
(t)~ (t)dt + 

~ 
~‘(t)Q~~(r)dyct)J a.s. (P) (54)

where i~(t) = E(m(t)ly
t
,H1l) , y’t is the restrictions of y to [Q t3

As Y = 11(y) and H is almost surely hijec tive, we may

anticipate that dv
1
/dv

0 
Is equal to dp

1
/dp

0 after some change of

variabies. This is Indeed the case.

Lemma 5. Let 0
~ 

and 0
2 be any random objects taking values

in the same measurable space 
~~~~~ 

, 0~ being a a—field in 0

Let f be a measurable mapping from (0,O~
) Into another measurable

space (A ,A~) and = f(91
) and X

2 f(82) . Let the measures on

(0,O~
) and (A ,A~

) induced by O~ and be denoted by 
~~ 

and

respectively, for I = 1 and 2 . If 
~l 

<< 
~2 

then Ti
1 

<< and

dfl1 d11 
-

r— O~)  E ( ~~ — 
~ 

a(f))O~) , a.s.

where a(f ) denotes the a—subfield of 0~ generated by f

If , in addition, f is bijective a.s. 
~~~~ 

then

T

i (~\) — ~~~~~~~~ (•f
_ i Q~)) -

, a.s. (r~~)

_ _ _
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This lemma is an immediate extension of Lemma 3, p. 99 in [52].

A proof can be found in [47].

In view of this lemma, It Is now easily seen that (dv1/dv0) (Y)

is equal to the right side of (54) with y~ replaced 1~y 11~~(y
t
) — j(yt)

yt being the restriction of 1 to E0,t]

Let e
11 

be the rn x m—matrix of which the (i,j) component is

one and the other components are zero . Let {R~~1, j = l,...,g
2 

— m}

be g x g_matrices such that {R
1 

, j  = l , . . . , g 2 } form a basis of

Now we may write ejj 
= 

~~ 
R~e~1 

for some constants {e~1
}.

Let 

~ 

e
k 

= 1e~~1 be the :at
~~~ 

of which the (i,j) component Is e~1 
(55)

Since f (d Y(t ) ) Y  (i) — f M(t)dr] belongs to L which is spanned by
LJ O J

{R1~
.. 

~R~~} , 
we have

ft  It
tr{e’~[ I (dY(r))Y (r) — J M(T)dT]} 0 , for j > m

3 JO 0

From (38), It can be shown by simple calculation that -

ft  — l f t
y( t) (J(Y))(t) = Etr{e~ [ j (dY (r ))Y (r ) — M ( t ) d r ] }

o Jo

It — ltr(e’[ J (dY(t))Y (r) — J M(t)dr])]’ (56)
U 0

where N is defined by -(39).

Nov we note that E(m (t)IJC! 
t
) 1 1 )  = E(m(t)IY

t
,H1) since 3

is bijective and Ift and j(yt) generate the same a—subfield of A

Summarizing what has been shown, we obtain the following theorem.

Theorem 13. Given a matrix Lie group C , we can formulate a

detection problem on it, which is described by the bilinear matrix Ito

L
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equations, (S2).~ and (52) 1 . If J tn’Qmdt < , a.s. (F) , the likelihood

ratio can be written as

(y) = exp{ - 
~ 

i~~ Q~~(t)~~dt + ~~Q
1(t)dy(t)}

dy(t) = (tr f e~ E (dY(t))Y
1(t) — M(t)dt] } , . .

tr (  e’[(dY(t))Y 1(t) —

= E(m(t)tY~ 
H~)

M(t) = 4 ~ ~ Q1~(t)R~R11=1 i— i

and ek is defined by (55).

VI. 3. Detection for Bilinear Syst~’ms.

In the previous section we have shown how a detection prob lem

on a matrix Lie group can be formulated if we are given the matrix Lie

group . We treated a class of detection problems by starting with a C
L

representation and injecting it to obtain a Cg representation. Moti-

vated by the existence of the bijective operator discussed in subsection VI.l,

we ask if we can reverse this process. I.e., can we start with a C
g

• representation and obtain a C~ representation? In this section we answer

that question in detail and thereby treat a large class of bilinear detec-

tion problems . 

-~~~~~~~~~—-~~~- 
— — —~ •- — -- —— ---------- -------- --- --------—
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In fact , in view of the bilinear form of the hypotheses H1 and

HO , a natural question arises as to the detection for problem arbitrary

bilinear g 
~ g-matrix Ito differential equations of the following form :

H1 : dY — ~ ~ 
A
1
m1dt +~~~~ B

i
dv
i + ~ 

C
1q1dtJy 

(57)

dY = [ ~ B1dw~ + C q dt]Y (58)
1=1 i=l

Y(O)=~~

We assume:



I. For simplicity in the illustration of our approach, A1, B~

and C
L 

are constant matrIces,

II. (A 1, I — 1,...,a} are linearly independen t,

III. w — [wl,...,wB
)’ is a standard B—vector Wieher process,

IV. m = [m.~,... ~%) ‘ is a measurable a—vector stochastic process

such -that ~ J in~(t)dt < ~ , a.s. (P) ,
1—1 0

V. q — [q1,. . . ,q~ ]’ is a measurable y—vector stochastic process

such that 
~ J q~(t)dt < ~ , a.s. (P), and q(t) Is
1=1 0

Y
t_measurable

VI. w is independent of in

Comparing these hypotheses with those defined by (52) and (53),

we anticipate a solution similar to that in the prevIous section. We
- t -

notice that if the solution Y to both (57) and (-~8)- is on a matrix Lie

group (Y(t) is then nonsingular), and in and w enter the observation

via the Lie algebra then an almost sure bijection J exists which

transforms Y into a causally equivalent vector process . The

detection problem at hand is then readily solved .

Let L denot. the Lie algebra generated by (A1,...,A5,B1,...,35).

~~~~~~~ thai t. a an -H.~ncfona1 Iin ~ar spac. of which (1~ ,.. .

‘. a s..~~. ~~~i-~~ 
S~., • • * • (0! 1 • I , . . .  .i ~4nt e S t L w

I a

I
4
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{R 1,...,R }  . Let Q
4 denote the n X B matrix , [Q~J 3

Assume that the Lie algebra L generated by (A
i~ •••~

A
a BiP•••~

B8, C1... ,C1 , 
R~R1 

, I = l ...,n , j — l,...,8} is an rn-dimensional

linear space. In view of the results in Section 2, we may presume that

a skew observation y =  3(Y) in the form of (50) exists and write

dZ = I dt + g~dw , •(6~~

where ~~~ rn-vector stochastic process I and the mx 8—matrix are

to be determined .

Substituting (60) into (3S) we obtain

f = m + r

rn = fm 1,.., m~ ,0 ,. .. ,0]’

r =  [r11 ...,r] ’ (61)

C
1q~ 

- 

~ i~l j~ l 
Q
1J
R.R

J 
= R~r~

(Q
~1 

is the (i,j) component of the nxn—matrix Q = Q~
(Q4)’; in general ,

Q~~~
1 

# (Q
~j
)
2
)

in

t m-n

I~~~~I

u_eli . y - 11(Y) ~,nd., sat j.I$.*

* . . -

L — _ 

~ 

__
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and simi1arly ~ J(Y) under 11o satisfies

11io : d~ 
= ~
4dw + r dt

This shows that the hypotheses , (57) and (58), are interpretable

• on the Lie group C of L . Therefore , Y (t) is invertible and ,

by Theorem 1, ~ and Y are causally equivalent.

Let C and B be defined as in the previous sections, and
g g

let the measures on (C
g~
B
g
) induced by Y under H1 and H

0 
be denoted

by 
~~ 

and p0 
respectively. In the following, we will evaluate the

Radon—Nikodym derivative dp
1/dp0 , assuming it exists.

Let ~~ (k=~ or k =rn - a. )  denote the famliy of continuous

kxk_matrix_valued functions, A , on T with Initial value A(O) — I ,

k k
and let B denote the Borel a—fIeld of C

Let y = [~ 1,...,~~ 1’and 1et v~ be the measure on (C
a
,B
a) induced

by y under 11~ . Let z = 

~~~+l’~ 
..,;] ‘and letv~ be the measure on

(C
m_u

,B
m_
~) induced by z under H

1 
. Then the measure on (C

in
,B
m)

induced by ~ und~r H~ is equal to t~e product measure \ ~< v~~. it is
dv’ ~ 1

easy to see that v~ = and thus —4 = 1 . Using a well—known lemma
dv0

(Lemma 2 , p. 99 in [.52]), we have, for t c T

1 2 1 2 - 1 -d(v
1 

x v1) 
~ 

dv
1 ~ 

dv
1 ~ 

dv
1 ~

1 2 ~~~~~~~~~ —1-(y ) —T(z)= —j- (Y )~~ (62)
d(y

0 
x v

0
) dv

0 
dv
0 

dv
0

1dv
1provided 

~~~~T 
ex i sts .

d

~• 1.4 1~ b. •h ui  ~~ , , I s  ~~lI~~ ‘s .~~ th , ~~~ $n -~ia5.’naI ~~~~~

- -~~~~~~~~~ _ - -~~~~~~- - -
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We note that y under satisfies

H21 : dy — indt + IUQ4dw + rdt

while y under H
0 

sa t i s f i es

H20 dy = IC~Q~dw + rdt

where r = I~~ . If d e t ( I ~ QJ~~) ~ 0 , it is known th at

the likelihood ratio of H21 to H
20 

can be written as:

—4 (y) = exp[ - 4J ~~~~~~~~~~~~~~~~~~~~ 
J~~~

(t)(I QI~Y’r(t)dt

+ f ‘(t)(I QI~)~~dy (t)] (63)

where (t) E(m(t)Iy
t
,H21) - We note that the assumption that q(t) is

Yt_measurable is used

Since J is bljective, we have, by Lemma 5,

dp d (v~ x v~ ) dv~
= 1 2 (J (Y) ) = T (J(Y)) (64)

dp
0 

d(v x v0) dv
0 

- -

Let e
k be defined as in (55) and write J(Y) as (56).

Sub stituting (6 i) into (~ • ) t hin lead . to t hi m l  lowing th ,’ii r.m .

~ i C”i..id.r ~~ ‘ . ~~~~~
, P~~p .ih..ra d M~ ~~~~~~~~~

b, I ~ .. • - • - 
~~~-• • ‘I ~~. • • - 

_ - -

., “ •. . ‘  - ,
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dV 1 (y t ) = exp[-l/2 f
trn,(I QImY~ rn

5
ds - rn~ (I aQIm )~~~r (s)ds

+ j  m~ (1aQI m )
_ l

dy( s) ]
where 0

m = E(m(s) I’1
~
,Ill
)

dy(s) - [tr(c ~~[ ( d Y ( s ) ) Y ’(s) - Mdsl),...,tr (e ’[(dY(s))Y 1
(s)-MdsI}I’

n
N = ~ Q. R .R •2 

~~~ 
.

~~~~~ 

ij

and 1~~, ek, 
and r(=lar) are defined by (62), (55) and (61),

respectively .

VI. 4. Least—Squares Estimation.

In view of Theorem 13 and Theorem 14 , it is noted that the

evaluation of the likelihood ra t io  depends on the evaluation of the condi-

tiona l expecta tion m = E(m(s)~Y
5
,H1
). We recall that under H1

y

4 
dY = [ ~ A

1
m
1
dt + z B

i
dw

1 
+ 

~ C q dt 3Y (65)
i=1 i=1 i=l I i

Y(O )  = I .

The evaluation of rn is thus .i nonlinear filtering problem.

I~ t h i  ~~ ion w. w i l l  use the t ransformation techniques

4s.v.ln~~4 Is (ti. ~‘t.vI- - .~~ .~~. ‘ issa !o solve t h Is  I %lI.ft n * V - cC

~~4., •~~. ~~~~~~~~ t- ~~ ~~~~ .‘i I )  1111 l u i t  f•t i T .

--
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dx(t) F(t)x(t)dt + G( t )dv ( t ) (67)

x(0) x0

Here x(t) is a random vector , H ( t ) ,  F ( t )  and G ( t )  are matrices of

app ropr ia te  dimension , v is a sta ndard Wiener process , x 0 is a no rmal

random vector and w , v , x
0 
are statistically independent.

It has been seen in the previous section t h a t

E ( m ( t ) I Y t ,H i
) E ( m ( t ) I y t ,H 11

) = E ( m ( t ) I y t ,H 21 ) ,  a .s .  (P ) .  (68)

Let deno te the family of a—vector—valued continuous functions and

its Borel o—field in the uniform topology. Then there exist a

S —measurable functional f :C -~R~ and a B
a_measurable functional

g 1 g

a a
f
3
:C -sR such that

f(y t) = E(m(t)IYt ,Hi
) ,  a.s.

f 3(yt ) = E(m (t)~ y
t
,H71

) ,  a.s.

and

f 1
~~ t ) = f

3
(I aH(Y t ) ) ,  a.s.  (6 9 ) —

whe r e I~ H :C g~~
a is def ined by (I~ H ( Y ) ) ( t )  = I~~[(H(Y))(t)] = y(t).

In the following we will denote f(y t) by m
~ 

and f3(y
t) by m (t).

We note that this convention is consistent with the previous sections.

Under the assumptions-(66) and (67) it is well known that  r n ( t )

satisfies the following Kalman—Bucy filtering equations ,

m(t) H(t)x(t)

d ; ( t )  • F(t);(t)dt + I rdt ~ P(t)H.(t)(i~ Q1
m
)
_ l

(dy(t)_H (t);(t)dt)

P 1 1 )  • I t )P(~ ) • P(~ 1 ’ (‘  I P1’ ~I4 ( • ) I I (~J m ) lH( V )P (t  ) • l.( t )( - ‘ (t I I 70)

L _ 
_

~ ~
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Using th ese equations together with  (68 ) and (69) ,  we

obtain the following theorem .

Theorem 15. Let the message process m and the observation process

Y be as descr ibed by the equations , (66), ( 6 7 ) ,  and (65).  Then the

condit ional  expectation m
~ 

sat isf ies

m = H(t)x
t t

dx
~ 

= F(t)x dt + rdt + P(t)H’(t)(I QI
~
)
~~~

(dy(t)_H(t)x
~
dt)

dy(t) = [tr{e~ [ (dY ( t)Y 1
(t)—Mdt]},...,

tr{e’[(dY(t))Y 1(t) — Mdt J }]’,

where P, I~~, ek
, r, M, Q are determined by (70), (62), (55), (61),

(39), (i9), respectively .

- 
- -  - _ -
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